Question: # Import necessary libraries import pandas as pd import numpy as np from sklearn.model _ selection import train _ test _ split from sklearn.linear _

# Import necessary libraries
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Lasso
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import seaborn as sns
# Load the dataset
data =pd.read_csv('movie_dataset.csv') # Update path if necessary
# Check the data structure to confirm column names
print(data.columns)
print(data.head())
print(data.info())
# Choose relevant features and target variable based on the actual dataset structure
# Update these based on the dataset columns
features =['budget','runtime', 'popularity', 'release_year', 'genre_Action', 'genre_Drama']
target ='revenue'
# Verify if 'release_year' or 'genres' exist; if not, use alternatives or skip
if 'release_year' not in data.columns:
print("Column 'release_year' not found. Using 'year' as an alternative if available.")
features.remove('release_year')
if 'year' in data.columns:
features.append('year')
# Check if genres are available and process accordingly
if 'genres' in data.columns:
# Assume genres are categorical and create dummy variables
data =pd.get_dummies(data,columns=['genres'],prefix='genre', drop_first=True)
# Update features to include new genre columns created
genre_cols =[col for col in data.columns if col.startswith('genre_')]
features.extend(genre_cols)
# Handle missing values in the selected features and target
available_features =[feature for feature in features if feature in data.columns]
data =data.dropna(subset=available_features +[target])
# Split the data into features and target
X =data[available_features]
y =data[target]
# Standardize the feature data
scaler =StandardScaler()
X =scaler.fit_transform(X)
# Split the data into training and testing sets
X_train, X_test, y_train, y_test =train_test_split(X,y,test_size=0.2,random_state=42)
# Initialize and fit the Lasso Regression model
lasso =Lasso(alpha=0.1) # Adjust alpha as needed
lasso.fit(X_train, y_train)
# Make predictions
y_train_pred =lasso.predict(X_train)
y_test_pred =lasso.predict(X_test)
# Evaluate the model
train_mse =mean_squared_error(y_train, y_train_pred)
test_mse =mean_squared_error(y_test, y_test_pred)
train_r2=r2_score(y_train, y_train_pred)
test_r2=r2_score(y_test, y_test_pred)
print(f"Train MSE: {train_mse},Train R2: {train_r2}")
print(f"Test MSE: {test_mse},Test R2: {test_r2}")
# Plotting actual vs.predicted values
plt.figure(figsize=(10,5))
plt.scatter(y_test, y_test_pred, alpha=0.5)
plt.xlabel("Actual Box Office Revenue")
plt.ylabel("Predicted Box Office Revenue")
plt.title("Actual vs.Predicted Box Office Revenue (Lasso Regression)")
plt.show()
# Plotting feature coefficients
coefficients =pd.Series(lasso.coef_,index=available_features)
plt.figure(figsize=(10,5))
coefficients.plot(kind='bar')
plt.title("Feature Coefficients after Lasso Regularization")
plt.xlabel("Features")
plt.ylabel("Coefficient Value")
plt.show()GIVE METHODOLOGY in 500to 999words. GIVE RESULTANDDISCUSSION in 600to 999words. project name :Lasso Regression for Predicting Movie Success. Use lasso regression to predict movie box office success based on various features.

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Programming Questions!