Question: import numpy as np from scipy.optimize import minimize from scipy import optimize from scipy import stats np . random.seed ( 4 2 ) sample _
import numpy as np
from scipy.optimize import minimize
from scipy import optimize
from scipy import stats
nprandom.seed
samplesize
data nprandom.normalloc scale sizesamplesize
def loglikelihoodparams data:
mu sigmasq params
n lendata
loglikelihood n nplog nppi sigmasq sigmasq npsumdata mu
return loglikelihood
def estimateparametersdata:
initialguess npmeandata npvardata
result minimizeloglikelihood, initialguess, argsdata methodLBFGSB
return result.x
def gradientmatrixparams data:
mu sigmasq params
n lendata
gradmu sigmasq npsumdata mu
gradsigmasq n sigmasq sigmasq npsumdata mu
return nparraygradmu gradsigmasq
estimatedparams estimateparametersdata
muestimate, sigmasqestimate estimatedparams
printEstimated mu: muestimate
printEstimated sigma: sigmasqestimate
gradient gradientmatrixestimatedparams, data
printGradient matrix:"
printgradient
from scipy import optimize
from scipy import stats
lrstat loglikelihoodestimatedparams, data loglikelihood data
lrpvalue stats.chicdflrstat, df
invhessian minimizeloglikelihood, estimatedparams, argsdata methodLBFGSB jacTruehessinv
waldstat npdotgradient npdotinvhessian, gradient
waldpvalue stats.chicdfwaldstat, df
lmstat npdotgradient gradient
lmpvalue stats.chicdflmstat, df
printLikelihood Ratio test pvalue:", lrpvalue
printWald test pvalue:", waldpvalue
printLagrange Multiplier test pvalue:", lmpvalue
Estimated mu:
Estimated sigma:
Gradient matrix:
ee
C:UsersbenoiAppDataLocalTempipykernelpy:: RuntimeWarning: invalid value encountered in log
loglikelihood n nplog nppi sigmasq sigmasq npsumdata mu
IndexError Traceback most recent call last
Cell In line
lrstat loglikelihoodestimatedparams, data loglikelihood data
lrpvalue stats.chicdflrstat, df
invhessian minimizeloglikelihood, estimatedparams, argsdata methodLBFGSB jacTruehessinv
waldstat npdotgradient npdotinvhessian, gradient
waldpvalue stats.chicdfwaldstat, df
File ~anacondaLibsitepackagesscipyoptimizeminimize.py: in minimizefun x args, method, jac, hess, hessp, bounds, constraints, tol, callback, options
res minimizenewtoncgfun x args, jac, hess, hessp, callback,
options
elif meth lbfgsb:
res minimizelbfgsbfun x args, jac, bounds,
callbackcallback, options
elif meth tnc:
res minimizetncfun x args, jac, bounds, callbackcallback,
options
File ~anacondaLibsitepackagesscipyoptimizelbfgsbpypy: in minimizelbfgsbfun x args, jac, bounds, disp, maxcor, ftol, gtol, eps, maxfun, maxiter, iprint, callback, maxls, finitediffrelstep, unknownoptions
else:
iprint disp
sf preparescalarfunctionfun x jacjac, argsargs, epsiloneps,
boundsnewbounds,
finitediffrelstepfinitediffrelstep
funcandgrad sffunandgrad
fortranint lbfgsbtypes.intvar.dtype
File ~anacondaLibsitepackagesscipyoptimizeoptimize.py: in preparescalarfunctionfun x jac, args, bounds, epsilon, finitediffrelstep, hess
bounds npinf, npinf
# ScalarFunction caches. Reuse of funx during grad
# calculation reduces overall function evaluati
Step by Step Solution
There are 3 Steps involved in it
1 Expert Approved Answer
Step: 1 Unlock
Question Has Been Solved by an Expert!
Get step-by-step solutions from verified subject matter experts
Step: 2 Unlock
Step: 3 Unlock
