Question: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.decomposition import FactorAnalysis from

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import FactorAnalysis
from sklearn.impute import SimpleImputer
from factor_analyzer import Rotator
# Load the data
df = pd.read_csv('C:\\csv', encoding='latin1')
# Selecting only numerical columns for factor analysis
numerical_columns = df.select_dtypes(include=[np.number]).columns.tolist()
# Dropping the 'mrt_flow' column if it exists in the numerical columns
if 'mrt_flow' in numerical_columns:
numerical_columns.remove('mrt_flow')
# Update DataFrame to use only the selected numerical columns
df_numerical = df[numerical_columns]
# Imputing missing values
imputer = SimpleImputer(strategy='median')
df_numerical_imputed = imputer.fit_transform(df_numerical)
# Standardizing the data
scaler = StandardScaler()
df_numerical_scaled = scaler.fit_transform(df_numerical_imputed)
# Performing factor analysis
fa = FactorAnalysis(n_components=5, random_state=0)
fa_components = fa.fit_transform(df_numerical_scaled)
# Creating DataFrame for factor analysis results
fa_df = pd.DataFrame(fa_components, columns=[f'Factor{i+1}' for i in range(fa.n_components)])
# Factor Analysis before rotation
fa = FactorAnalysis(n_components=5, random_state=0)
fa.fit(df_numerical_scaled)
# Factor loadings
loadings = fa.components_
# Plotting heatmap for factor loadings
plt.figure(figsize=(20,7))
sns.heatmap(pd.DataFrame(fa.components_, columns=numerical_columns), annot=True, cmap='coolwarm',
yticklabels=[f'Factor{i+1}' for i in range(fa.n_components)],
xticklabels=numerical_columns)
plt.title('Factor Loadings Before Rotation')
plt.xlabel('Variables')
plt.ylabel('Factors')
plt.xticks(rotation=45, ha="right")
plt.yticks(rotation=0)
plt.tight_layout()
plt.show()
columns = df_numerical.columns
# Applying Varimax rotation
rotator = Rotator(method='varimax')
loadings_rotated = rotator.fit_transform(loadings)
# Plotting the heatmap for rotated factor loadings
plt.figure(figsize=(20,7))
sns.heatmap(pd.DataFrame(loadings_rotated, columns=columns),
annot=True, cmap='coolwarm',
yticklabels=[f'Factor {i+1}' for i in range(loadings_rotated.shape[0])],
xticklabels=columns)
plt.title('Factor Loadings After Varimax Rotation')
plt.xlabel('Variables')
plt.ylabel('Rotated Factors')
plt.xticks(rotation=45, ha="right")
plt.tight_layout()
plt.show()
# Plotting bar plots for factor loadings
# Before rotation
loadings_before_rotation = pd.DataFrame(fa.components_, columns=numerical_columns)
plt.figure(figsize=(12,6))
for i in range(loadings_before_rotation.shape[0]):
plt.bar(numerical_columns, loadings_before_rotation.iloc[i], label=f'Factor{i+1}')
plt.title('Factor Loadings Before Rotation')
plt.xlabel('Variables')
plt.ylabel('Loadings')
plt.xticks(rotation=45, ha="right")
plt.legend()
plt.tight_layout()
plt.show()
# After rotation
from sklearn.decomposition import PCA
pca = PCA(n_components=5)
df_numerical_rotated = pca.fit_transform(df_numerical_scaled)
loadings_after_rotation = pd.DataFrame(pca.components_, columns=numerical_columns)
plt.figure(figsize=(12,6))
for i in range(loadings_after_rotation.shape[0]):
plt.bar(numerical_columns, loadings_after_rotation.iloc[i], label=f'Factor{i+1}')
plt.title('Factor Loadings After Rotation')
plt.xlabel('Variables')
plt.ylabel('Loadings')
plt.xticks(rotation=45, ha="right")
plt.legend()
plt.tight_layout()
plt.show()
please correct the code(the code of factor loading after rotate is not correct), and plot the bar charts of the factor loading(1 chart for unrotate 1 chart for rotated). The bar charts are ploted by the factor loading! please give me the complete codes. Thank you!(Please do not do it if you are not familiar with factor analysis)

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!