Question: INPUT: n - the board size (2x2 board), L- location of the hole. OUTPUT: tiling of the board Tile(n, L) if n = 1 then


INPUT: n - the board size (2"x2" board), L- location of the hole. OUTPUT: tiling of the board Tile(n, L) if n = 1 then Trivial case Tile with one tromino return Divide the board into four equal-sized boards Place one tromino at the center to cut out 3 additional holes Let L1, L2, 13, 14 denote the positions of the 4 holes Tile (n-1, L1) Tile (n-1, L2) Tile (n-1, L3) Tile (n-1, L4) Read the attached file "tiling_algorithm.pdf". For the algorithm given in the file, give the recurrence of the algorithm (please don't forget to include the base case(s)) running time T(n) for each of the following scenarios: i. Assume n is the total number of cells on the board. (n = 54 in the example.) ii. Assume n is the side length of the board. (n = 8 in the example.) iii. Assume n is the exponent in L=2" where L is the side length of the board. (n = 6 in the example)
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
