Question: It's extremely Urgent, I need its answer now please. EXERCISE 7: Let D the region bounded below by the plane z = 0, above by

It's extremely Urgent, I need its answer now please.
EXERCISE 7: Let D the region bounded below by the plane z = 0, above by the sphere x 2+y 2+z 2 = 32 and on the side, up part, by the cone x 2 4 + y 2 4 z 2 4 = 0, lower part by the right circular cylinder x 2 + y 2 = 1. For each question explain clearly how you do, how you find it by geometric (looking in space, projection, lines parallel....). DO NOT evaluate the integrals. a/ Sketch approximately the region. b/ Set up the triple integral in Cartesian coordinates that gives the volume of D using the order of integration dz dy dx. c/ Set up the triple integral in Cylindrical coordinates that give the volume of D using the order of integration dz dr d. d/ Set up the triple integral in Spherical coordinates that give the volume of D using the order of integra- tion d d d
EXERCISE 7: Let D the region bounded below by the plane z=0, above by the sphere x2+y2+z2=32 and on the side, up part, by the cone 4x2+4y24z2=0, lower part by the right circular cylinder x2+y2=1. For each question explain clearly how you do, how you find it by geometric (looking in space, projection, lines parallel...). DO NOT evaluate the integrals. a/ Sketch approximately the region. b/ Set up the triple integral in Cartesian coordinates that gives the volume of D using the order of integration dzdydx. c/ Set up the triple integral in Cylindrical coordinates that give the volume of D using the order of integration dzdrd. d / Set up the triple integral in Spherical coordinates that give the volume of D using the order of integration ddd
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
