Question: Let $T: R^{2} ightarrow R^{2}$ be the linear operator defined by $$ Tleft(left[begin{array}{1} X_{1} W X_{2} end{array} ight] ight)=left[begin{array}{1} 8 x_{1}-x_{2} 8 x_{1}+x_{2} end{array} ight]

Let $T: R^{2} ightarrow R^{2}$ be the linear operator defined by $$ T\left(\left[\begin{array}{1} X_{1} W X_{2} \end{array} ight] ight)=\left[\begin{array}{1} 8 x_{1}-x_{2} 8 x_{1}+x_{2} \end{array} ight] $$ and let $B=\left\{\boldsymbol{u}_{1}, \boldsymbol{u} _{2} ight\}$ be the basis for which $\boldsymbol{u} _{1}=\left[\begin{array}{1}1 \\ 8\end{array} ight], \boldsymbol{u} _{2}=\left[\begin{array}{c}-1 O\end{array} ight]$. Find $[T]_{B}$. $[T]_{B}=\left(\begin{array}{11}? & ? ? & ?\end{array} ight) $ CS.JG. 114
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
