Question: Let $T: R^{2} ightarrow R^{3}$ be defined by $T=left(left[begin{array} {1}x_{1} x_{2} end{array} ight] ight)=left [begin{array}{c}x_{1}+2 x_{2} -x_{1} end{array} ight]$ Find the matrix $[1]

 Let $T: R^{2} ightarrow R^{3}$ be defined by $T=\left(\left[\begin{array} {1}x_{1} \\x_{2}

Let $T: R^{2} ightarrow R^{3}$ be defined by $T=\left(\left[\begin{array} {1}x_{1} \\x_{2} \end{array} ight] ight)=\left [\begin{array}{c}x_{1}+2 x_{2} \ -x_{1} \\ \end{array} ight]$ Find the matrix $[1] {B^{\prime}, B}$ relative to the bases $B=\left\{u_{1}, u_{2} ight\}$ and $B^{\prime}=\left\{v_{1}, v_{2}, v_{3} ight\}$, where $$ u_{1}=\left[\begin{array}{1} 11 3 \end{array} ight], \quad u_{2}=\left[\begin{array}{c} -21 4 \end{array} ight], \quad v_{1}=\left[\begin{array}{1} 1 1 1 \end{array} ight], \quad v_{2}=\left[\begin{array}{1} 21 2. 0 \end{array} ight], \quad v_{3}=\left[\begin{array}{1} 3 0 0 \end{array} ight] $$ NOTE: Enter the exact values. $$ [T]_{B^{\prime}, B}=\left(\begin{array}{11} ? & ? ? & ? ? & ? \end{array} ight) $$ CS.JG. 115

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!