Question: Lete 1 = (1,0,0) T , e 2 = (0,1, 0) T , e 3 = (0,0,1) T be the standard basis of R 3
Lete1= (1,0,0)T, e2= (0,1, 0)T, e3= (0,0,1)Tbe the standard basis ofR3. Consider a linear mapT:R3->R3satisfying T(x, y, z)T= (0,0,0)Twhenever 2x-y+z= 0.
(a) Show thatT ((1/2, 0, -1)T)= (0,0,0)Tand T(0, 1, 1)T= (0, 0, 0)T.
(b) Justify whetherTis an isomorphism using result from (a).
(c) GivenT(e3) = (1,2,3)T. FindT(e1) andT(e2) by using result from (a).
(d) Use your results ofT(e1), T(e2), T(e3) to determine the image of an arbitrary vector
(x, y, z)T, an element ofR3under T.
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
