Question: MATH 1111 : Chapter 9 : Lab 9.2 Some definitions for the lab. A = [ 5, 7, 2, 9, 1, 3, 4, 3, 5,
MATH 1111 : Chapter 9 : Lab 9.2
Some definitions for the lab.
A = [ 5, 7, 2, 9, 1, 3, 4, 3, 5, 8, 7, 3 ]
B = [ 5, 8, 3, 5, 9, 5, 4, 7, 1, 0, 5, 7, 8 ]
C = [ "W", "X", "Y", "A", "B", "M", "N", "P" ]
D = [ "A", "B", "C", "X", "Y", "Z", "G", "M", "T", "W" ]
E = 3
F = "ABCDEFGH"
G = "F"
H = 5
T = [ [ 4, 5, 6 ], [ 4, 3 ], [ 1, 2, 3 ], [ 4, 5, 6, 7, 8 ], [ 7, 8, 9 ] ]
W = "ABCJKLMNTVWXYZ"
X = "PQRSTUVW"
Y = [ [ "A", "B", "C" ], [ "T", "R" ], [ "D", "E", "F" ], [ "W", "X", "Y", "Z" ], [ "G", "H" ] ]
Z = 23.658
Coin = [ "H", "T" ]
Die = [ 1, 2, 3, 4, 5, 6 ]
Starter = [ ]
Blank = ""
alph = ["A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T","U","V","W","X","Y","Z"]
Each expression evaluation begins from these definitions. Any alterations during the evaluation of the
expression is lost after the conclusion of the evaluation of that expression, although the alteration does
hold in effect until the end of that evaluation.
Random Number Function
1) 0.00798219 2) 0.95777 3) 0.569994
4) 0.0858953 5) 0.788639 6) 0.11372
7) 0.572406 8) 0.453769 9) 0.955987
10) 0.96172 11) 0.561944 12) 0.736736
13) 0.0398207 14) 0.917949 15) 0.652045
16) 0.686816 17) 0.101823 18) 0.0118972
19) 0.967129 20) 0.48664 21) 0.469347
22) 0.636154 23) 0.92579 24) 0.810946
25) 0.316752 26) 0.601198 27) 0.0508473
28) 0.682362 29) 0.419461 30) 0.592436
31) 0.721678 32) 0.764962 33) 0.704385
34) 0.439848 35) 0.485942 36) 0.325005
37) 0.286768 38) 0.314429 39) 0.736418
40) 0.922427 41) 0.497034 42) 0.0954018
43) 0.407317 44) 0.357644 45) 0.346741
46) 0.178065 47) 0.307877 48) 0.0171275
49) 0.820913 50) 0.493516 51) 0.242902
52) 0.72014 53) 0.776894 54) 0.318508
55) 0.921714 56) 0.43593 57) 0.910811
58) 0.485533 59) 0.822344 60) 0.194783
MATH 1111 : Chapter 9 : Lab 9.2 Name_________________________
Evaluate/Calculate Value
1 Coin[floor(random() * length(Coin))]
2 Coin[floor(random() * length(Coin))]
3 Coin[floor(random() * length(Coin))]
4 Die[floor(random() * length(Die))]
5 Die[floor(random() * length(Die))]
6 Die[floor(random() * length(Die))]
7 charAt(F, floor(random() * length(F)))
8 charAt(F, floor(random() * length(F)))
9 charAt(F, floor(random() * length(F)))
1
0 T[floor(random() * 5)][floor(random() * 2)]
1
1 Y[floor(random() * length(Y))]
1
2 length(Y[floor(random() * length(Y))])
1
3 floor(Z * random())
1
4 floor(Z * random()) % 2
1
5 A[floor(random() * length(A))] - B[floor(random() * length(B))]
1
6 A[B[floor(random() * length(B))]]
1
7 alph[floor(random() * length(alph))]
1
8 A[floor(E * random())]
1
9 [ floor(E * random()), floor(H * random()), floor(E * random()) ]
2
0 random() < 0.5
2
1 random() < 0.5
2
2 random() < 0.5
2
3 A[floor(H * random())] <= 5
2
4 (random() < 0.5) && (random() < 0.5)
2
5 (random() < 0.5) || (random() < 0.5)
26) A bag of marbles contains 10 marbles. They are all white marbles with black numbers written on
them. The numbers are 3, 2, 3, 5, 1, 6, 3, 2, 4, 1. You reach into the bag with one hand and grab two
marbles. List all of the possible pairs of numbers of the two marbles in your hand.
27) You are creating an array of two numbers. A bag of marbles contains 5 marbles. They are all white
marbles with black numbers written on them. The numbers are 3, 2, 3, 5, 1. You reach into the bag and
grab one marble. You record the number in the 0 th position of the array. Set this marble to the side.
Now you reach in a second time and grab one marble. You record the number in the 1 st position of the
array. List all of the possible arrays that could be made.
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
