Question: $mathbf{Q} # 3$ : (a) Find an asymptotic upper bound for the recurrence $mathrm{T}(mathrm{n})=mathrm{T}(mathrm{n}- mathrm{a})+mathrm{T}(mathrm{a})+mathrm{n}$ where $mathrm{a}>=1$ is constant, by using recursion iteration to generate

$\mathbf{Q} \# 3$ : (a) Find an asymptotic upper bound for the recurrence $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}- \mathrm{a})+\mathrm{T}(\mathrm{a})+\mathrm{n}$ where $\mathrm{a}>=1$ is constant, by using recursion iteration to generate a guess. For base case we assume that $\mathrm{T}(\mathrm{n}) \varepsilon$ $\Theta(1)$ for $\mathrm{n} \leq \mathrm{a}$, i.e. that $\mathrm{T}(1), \mathrm{T} (2), \ldots \ldots \mathrm{T}$ (a) are all constants. (b) Complete the substitution method by proving that the guess generated above is indeed an asymptotic upper bound for the recurrence cs.vs. 1231
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
