Question: Modify these codes def SGD ( self , training _ data, * , mini _ batch _ size, eta, lmbda = 0 , test _

Modify these codes
def SGD(self, training_data, *, mini_batch_size, eta, lmbda=0, test_data=[], max_epochs=100, patience):
# Initialize variables for early stopping
best_accuracy =0
epochs_no_improve =0
best_epoch =0
should_stop = False
# Training loop
for epoch in range(max_epochs):
np.random.shuffle(training_data)
for j in range(0, len(training_data), mini_batch_size):
mini_batch = training_data[j:j+mini_batch_size]
self.update_mini_batch(mini_batch, eta, lmbda)
# Calculate accuracy on training and test data
train_accuracy = self.evaluate(training_data)[1]
test_accuracy = self.evaluate(test_data)[1]
print(f"Epoch {epoch}: Training Accuracy {train_accuracy}, Test Accuracy {test_accuracy}")
# Check for improvement in test accuracy
if test_accuracy > best_accuracy:
best_accuracy = test_accuracy
best_epoch = epoch
epochs_no_improve =0
else:
epochs_no_improve +=1
# If there is no improvement for 'patience' epochs, stop training
if epochs_no_improve >= patience:
should_stop = True
break
print(f"Early stopping at epoch {best_epoch}. Best Test Accuracy: {best_accuracy}")
return best_accuracy

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!