Question: Part 2: Function Notation and Compositions A. f = {(-2, 3), (-1, 1), (0, 0), (1, -1), (2, -3)} g = {(-3, 1), (-1, -2),

Part 2: Function Notation and Compositions A. f = {(-2, 3), (-1, 1), (0, 0), (1, -1), (2, -3)} g = {(-3, 1), (-1, -2), (0, 2), (2, 2), (3, 1)} 1. f(1) 2. g(-1) 3. g(f (1)) 4. f(g(0)) 5. f(g(-1) ) 6. g(f(-1)) B. Given two functions, f(x) and g(x), evaluate the following given that: For f (x): f ( - 2) = 5, f (- 1) = 2, f(0) = -1, f(1) = -3, f(2) = 3 For g(x): g(-2) = -1, g(-1) = -2, g(0) = 0, g(1) = 2, g(2) = 3 1 . ( f + f ) (0 ) 2. (f - 9) (-2) 3. f(g(-1)) 4. g(f(0)) 5 . f(g (1) ) - 9(f(-1)) 6. f-1 (f (2) ) C. Given f(x) and g(x) as shown in the graphs above, find the following: 19 ( x ) 1. f(g(1)) 2. gcf (-2) ) 3. f(f (0) ) 4. f-1(9 (2) ) 5. g ( f -1 (2) ) 6.9-1(9-1(1)) 7. (f + f) (2) 8. f(g(1)) 9. g(f(-1) ) 10 . f-1 (f-1 (1) ) f (x) =+ 9 (x ) = 4 11. f(4) - g(-1) 12. (f - g) (- 3) + f(f (2 ) )
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
