Question: Please help me with a detailed explanation and function demonstration. I will rate, thank you! 1. Show that given an RSA modulus N and (N),
Please help me with a detailed explanation and function demonstration. I will rate, thank you!

1. Show that given an RSA modulus N and (N), it is possible to factor N easily. Hint: you have two equations (involving (N) and N ) and two unknowns (p and q ). Write a sage function that takes as input an RSA modulus N and (N) and factors N. Use it to factor the following 2048-bit RSA modulus. Note: take care that there are no precision issues in how you solve the problem; double-check your factorization! N=phi=13314027288933519292210840926066217447630383165238367168854700948425323594058691714048266918225636828526099282944720798018317017486762035895223096998644755933058349242963662729864033859653189455654601311315434682321227174892785964799453458613355321802298384810842146544208991909061054234476829448172510375722242191711597106302680658714128758703726515065366909432311668657453655886659164736105331104651601306966903686673412655801774439375116161121919576957848855988290239724830903391166147500585469682002106907250224853332875483269861623840522138125214513743991909080008595527438938272184495666111387450954720057618071331402728893351929221084092606621744763038316523836716885470094842532359405869171404826691822563682852609928294472079801831701748676203589522309699864475593305834924296366272986403385965318945565460131131543468232122717489278596479945345861335532180229838481084214654420899190906105423447682944817251037572149322920465388672184976352567722273701090667853120965897796223554954190060499745678951896873181104980586923156308566936720693205290623996815635903820151773229097447493307026079314281541837265520045272019562263968355003467790624942596389831911789150278351345277516070178590645117315204402981816860178885028680
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
