Question: Please use Python code to find the following answers. One may wonder if people of similar heights tend to marry each other. For this purpose,

Please use Python code to find the following answers.

One may wonder if people of similar heights tend to marry each other. For this purpose, a sample of newly married couples was selected. Let be the height of the husband and be the height of the wife. The heights (in cm) of husbands and wives are found in below table.

HH WH
186 175
180 168
160 154
186 166
163 162
172 152
192 179
170 163
174 172
191 170
182 170
178 147
181 165
168 162
162 154
188 166
168 167
183 174
188 173
166 164
180 163
176 163
185 171
169 161
182 167
162 160
169 165
176 167
180 175
157 157
170 172
186 181
180 166
188 181
153 148
179 169
175 170
165 157
156 162
185 174
172 168
166 162
179 159
181 155
176 171
170 159
165 164
183 175
162 156
192 180
185 167
163 157
185 167
170 157
176 168
176 167
160 145
167 156
157 153
180 162
172 156
184 174
185 160
165 152
181 175
170 169
161 149
188 176
181 165
156 143
161 158
152 141
179 160
170 149
170 160
165 148
165 154
169 171
171 165
192 175
176 161
168 162
169 162
184 176
171 160
161 158
185 175
184 174
179 168
184 177
175 158
173 161
164 146
181 168
187 178
181 170

1. Compute the covariance between the heights of the husbands and wives.

2. What would the covariance be if heights were measured in inches rather than in cm?

3. Compute the correlation coefficient between the heights of the husband and wife.

4. What would the correlation be if heights were measured in inches rather than in cm?

5. What would the correlation be if every man married a woman exactly 5 cm shorter than him? 6. We wish to fit a regression model relating the heights of husbands and wives. Which one of the two variables would you choose as the response variable? Justify your answer.

7. Give a scatter plot of the response variable versus the predictor variable.

8. Using your choice of the response variable in (5.), test the null hypothesis that the slope is zero.

9. Using your choice of the response variable in (5.), test the null hypothesis that the intercept is zero. (k) Give comments on the normality of the residuals.

11. Refit the regression after removing the outlier(s). Compare the two regression lines.

12. Check the normality of the residuals of the last regression (the one with outliers removed). What is your comment?

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!