Question: Problem 1. Let f(n) be a function of positive integer n. We know: f(1) = 1 f(2) = 2 f(n) = 3 + f(n 2).
Problem 1. Let f(n) be a function of positive integer n. We know: f(1) = 1 f(2) = 2 f(n) = 3 + f(n 2). Prove f(n) = O(n).
Problem 2. Let f(n) be a function of positive integer n. We know: f(1) = 1 f(2) = 2 f(n) = n/10 + f(n 2). Prove f(n) = O(n 2 ).
Problem 1. Let f(n) be a function of positive integer n. We know: f(1)=1f(2)=2f(n)=3+f(n2). Prove f(n)=O(n) Problem 2. Let f(n) be a function of positive integer n. We know: f(1)=1f(2)=2f(n)=n/10+f(n2). Prove f(n)=O(n2)
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
