Question: Pseudo code below: # Constructing the polynomial x^2 + y^2 x = np.linspace(-1, 1, 10) y = np.linspace(-1, 1, 10) x, y = np.meshgrid(x,

To do: Multidimensional polyfit code You now solve for the parameter in

Pseudo code below:

 

# Constructing the polynomial x^2 + y^2
x = np.linspace(-1, 1, 10)
y = np.linspace(-1, 1, 10)
x, y = np.meshgrid(x, y, copy=False)
Z = x**2 + y**2 + np.random.rand(*x.shape)*0.01


fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(x, y, Z, cmap=cm.coolwarm,
                      linewidth=0, antialiased=False)
plt.title('Original Surface')

X = x.flatten()
Y = y.flatten()

# Create the matrix A
A = #TODO
b = #TODO
# Solve for theta
Q = #TODO
Q1 = #TODO
theta = #TODO


print("Estimated parameters are theta = [%8.2f %8.2f %8.2f %8.2f %8.2f %8.2f]" %(theta[0],theta[1],theta[2],theta[3],theta[4],theta[5]))

# Compute the estimated polynomial
Zest = theta[0] + theta[1]*x + theta[2]*y + theta[3]*x**2 + theta[4]*x*y+ theta[5]*y**2
fig1 = plt.figure()
ax = fig1.gca(projection='3d')
surf = ax.plot_surface(x, y, Zest, cmap=cm.coolwarm,
                      linewidth=0, antialiased=False)
c=plt.title('Estimated Surface')

To do: Multidimensional polyfit code You now solve for the parameter in the expansion (x, y) = 0[0] + 0[1] x + 0[2] y + 0[3] x + 0[4] xy + 0[5] y . You will fit this model to 100 points drawn from the function z = x + y corrupted by noise. The code is similar to the 1-D case considered above. Specifically, the model is x7 X1Y1 } e[0] x X2Y2 0[1] Z1 Z2 Zn Z || X1 x2 XN 1 Y2 YN XXN YN Y0[5]. A 0 You will complete the section of the code marked TODO. Pay special attention to the order of the polynomials and the coefficients. Numpy might be ordering it differently.

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

To solve for the parameters in the expansion fx y c0 c1 x c2 y c3 x2 c4 xy c5 y2 where c is the para... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Programming Questions!