Question: Question 1 (3.75 points) Consider the following Python commands: import scipy.stats as st st.norm.interval(0.99, 0.50, 0.05), What does the 0.99 represent? Question 1 options: a)
Consider the following Python commands:
import scipy.stats as st
st.norm.interval(0.99, 0.50, 0.05),
What does the 0.99 represent?
Question 1 options:
a)
proportion
b)
standard error
c)
confidence level
d)
mean
Question 2(3.75 points)
Which of the following Python functions is used to calculate a confidence interval based on Student's t-distribution?
Note: st is from the import command import scipy.stats as st
Question 2 options:
a)
st.t.normal
b)
st.t.confidence_interval
c)
st.t.interval
d)
st.norm.confidence_interval
Question 3(3.75 points)
If n = 100 and mean = 219 and sample standard deviation = 35, which of the following Python lines outputs the 95% confidence interval?
Question 3 options:
a)
import scipy.stats as st
n = 100
df = n - 1
mean = 219
stderror = 35.0/(n**0.5)
print(st.t.interval(0.90, df, mean, stderror))
b)
import scipy.stats as st
n = 100
df = n - 1
mean = 219
stderror = 35.0/(n**0.5)
print(st.t.interval(0.95, df, mean, stderror))
c)
import scipy.stats as st
n = 100
df = n - 1
mean = 219
stderror = 0.5/(n**35)
print(st.t.interval(0.95, df, mean, stderror))
d)
import scipy.stats as st
n = 219
df = n - 1
mean = 100
stderror = 35.0/(n**0.5)
print(st.t.interval(0.95, df, mean, stderror))
Question 4(3.75 points)
Which of the following Python lines calculates the 99% confidence interval for proportion of Exam1 scores with scores greater than 90 from a CSV file named ExamScores?
Question 4 options:
a)
import pandas as pd
import scipy.stats as st
scores = pd.read_csv('ExamScores.csv')
x = scores[['Exam1']].count()
n = (scores[['Exam1']] > 90).values.sum()
p = x/n*1.0
stderror = (p * (1 - p)/n)**0.5
print(st.norm.interval(0.99, p, stderror))
b)
import pandas as pd
import scipy.stats as st
scores = pd.read_csv('ExamScores.csv')
n = scores[['Exam1']].count()
x = (scores[['Exam1']] >= 90).values.sum()
p = x/n*1.0
stderror = (p * (1 - p)/n)**0.5
print(st.norm.interval(0.99, p, stderror))
c)
import pandas as pd
import scipy.stats as st
scores = pd.read_csv('ExamScores.csv')
n = scores[['Exam1']].count()
x = (scores[['Exam1']] > 90).values.sum()
p = x/n*1.0
stderror = (p * (1 - p)/n)**0.5
print(st.norm.interval(0.99, p, stderror))
d)
import pandas as pd
import scipy.stats as st
scores = pd.read_csv('ExamScores.csv')
n = scores[['Exam1']].count()
x = (scores[['Exam1']] > 90).values.sum()
p = x/n*1.0
stderror = (p * (1 - p)/n)**0.5
print(st.norm.interval(0.90, p, stderror))
Question 5(3.75 points)
If n = 99 and proportion (p) = 0.75, which of the following Python lines outputs the 99% confidence interval?
Question 5 options:
a)
import scipy.stats as st
n = 99
p = 0.25
stderror = (p * (1 - p)/n)**0.5
print(st.norm.interval(0.99, p, stderror))
b)
import scipy.stats as st
n = 99
p = 0.75
stderror = (p * (1 - p)/n)**0.5
print(st.norm.interval(0.95, p, stderror))
c)
import scipy.stats as st
n = 99
p = 0.75
stderror = (p * (1 - p)/n)**0.5
print(st.norm.interval(0.98, p, stderror))
d)
import scipy.stats as st
n = 99
p = 0.75
stderror = (p * (1 - p)/n)**0.5
print(st.norm.interval(0.99, p, stderror))
Question 6(3.75 points)
If n = 99 and proportion (p) = 0.75, which of the following Python lines outputs the 95% confidence interval?
Question 6 options:
a)
import scipy.stats as st
n = 99
p = 0.25
stderror = (p * (1 - p)/n)**0.5
print(st.norm.interval(0.95, p, stderror))
b)
import scipy.stats as st
n = 99
p = 0.75
stderror = (p * (1 - p)/n)**0.5
print(st.norm.interval(0.95, p, stderror))
c)
import scipy.stats as st
n = 100
p = 0.75
stderror = (p * (1 - p)/n)**0.5
print(st.norm.interval(0.95, p, stderror))
d)
import scipy.stats as st
n = 99
p = 0.75
stderror = (p * (1 - p)/n)**0.5
print(st.norm.interval(0.99, p, stderror))
Question 7(3.75 points)
Which of the following Python functions is used to calculate a confidence interval based on normal distribution?
Note: st is from the import command import scipy.stats as st
Question 7 options:
a)
st.norm.normal
b)
st.norm.confidence_interval
c)
st.t.confidence_interval
d)
st.norm.interval
Question 8(3.75 points)
Which of the following Python lines calculates the 95% confidence interval for the mean of variable Exam1 from a CSV file named ExamScores?
Question 8 options:
a)
import pandas as pd
import scipy.stats as st
scores = pd.read_csv('ExamScores.csv')
n = scores[['Exam1']].count()
df = n - 1
mean = scores[['Exam1']].std()
stdev = scores[['Exam1']].mean()
stderror = stdev/(n**0.5)
print(st.t.interval(0.95, df, mean, stderror))
b)
import pandas as pd
import scipy.stats as st
scores = pd.read_csv('ExamScores.csv')
n = scores[['Exam1']].count()
mean = scores[['Exam1']].mean()
stdev = scores[['Exam1']].std()
stderror = stdev/(n**0.5)
print(st.t.interval(0.95, df, mean, stderror))
c)
import pandas as pd
import scipy.stats as st
scores = pd.read_csv('ExamScores.csv')
n = scores[['Exam1']].count()
df = n - 1
mean = scores[['Exam1']].mean()
stdev = scores[['Exam1']].std()
stderror = stdev/(n**0.5)
print(st.t.interval(0.99, df, mean, stderror))
d)
import pandas as pd
import scipy.stats as st
scores = pd.read_csv('ExamScores.csv')
n = scores[['Exam1']].count()
df = n - 1
mean = scores[['Exam1']].mean()
stdev = scores[['Exam1']].std()
stderror = stdev/(n**0.5)
print(st.t.interval(0.95, df, mean, stderror))
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
