Question: Sample Example Solution for reference: T(n) = aT(n/b) +(n k log p n) Conditions applied: a>= 1, b>1, k>=0 and p is any real number.
Sample Example Solution for reference: T(n) = aT(n/b) +(nk logp n)
Conditions applied:
a>= 1, b>1, k>=0 and p is any real number.
1. if a>bk , then T(n) = (n logba)
2. if a=bk,
a. if p> -1, then T(n) =(n logba log p+1 n)
b. if p = -1, then T(n)= (n logba log log n)
c. if p< -1, then T(n)= (n logba)
3. if ak,
a. if p>=0, then T(n) =(nk logp n)
b. if p<0, then T(n) =(nk)
Derive the below given recursive equitation runtime T(n) using Master Theorem and justify your solution whether you can apply Master Theorem or not.
T(n)=2T(n/4)+n0.51
T(n)=2T(n/2)+logn
T(n)=0.5T(n/2)+1/n
T(n) =3T(n/2)+n
T(n)=3T(n/3)+n
T(n)=3T(n/4)+nlogn
T(n)=3T(n/3)+n/2
T(n)=3T(n/3)+n/2
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
