Question: Smaller Ships Larger Ships Interval Estimation for the Difference Between Formulas 93.4 81.2 Two Population Means, Sigma Known Case 84.11 85.67 87.48 83.52 Sample 1

Smaller Ships Larger Ships Interval Estimation for the Difference Between Formulas
93.4 81.2 Two Population Means, Sigma Known Case
84.11 85.67
87.48 83.52 Sample 1 Size 37 =COUNT(A:A)
83.06 88.79 Sample 2 Size 44 =COUNT(B:B)
91.6 80.4
72.96 82.81 Sample 1 Mean 84.59756757 =AVERAGE(A:A)
77.41 80.93 Sample 2 Mean 81.79181818 =AVERAGE(B:B)
85.78 74.96 Point Estimate for Mean Difference (2 decimals) 2.81 =ROUND(E7-E8,2)
80.77 91.72
89.8 78.4 Population 1 Standard Deviation 5.61317
85.45 82.73 Population 2 Standard Deviation 5.044391
86.53 81.63
80.84 89.23 Population 1 Variance 31.50767745 =E11^2
88.14 77.82 Population 2 Variance 25.44588056 =E12^2
87.3 91
83.37 85.14 Standard Error 1.195773523 =SQRT(E14/E4+E15/E5)
89.38 83.74
75.57 76.82 z-critical (2 decimals) 1.96 =ROUND(NORM.S.INV(1-0.05/2),2)
76.55 76.63
75.33 81.2 Margin of error (2 decimals) 33.32 =ROUND(E19*17,2)
85.61 82.33
90.97 74.93 C.I. Lower Limit (2 decimals) -30.51 =E9-E21
89.18 78.63 C.I. Upper Limit (2 decimals) 36.13 =E9+E21
88.05 74.91
93.81 83.08
83.33 74.95
89.84 81.86
81.78 81.36
86.21 87.81
91.4 85.18
72.74 86.88
90.37 74.85
76.99 75.21
79.67 81.72
84.61 82.75
84.8 86.59
85.92 75.24
86.33
80.44
83.87
81.54
85.7
78.81
79.53

I am trying to find the margin of error and confidence interval.

At 95% confidence, what is the margin of error?

What is a 95% confidence interval estimate of the difference between the population mean ratings for the two sizes of ships?

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!