Question: table [ [ Customer ID , Gender,Car Type,Shirt Size,Class ] , [ 1 , M , Family,Small,C 0 ] , [ 2 , M

\table[[Customer ID,Gender,Car Type,Shirt Size,Class],[1,M,Family,Small,C0],[2,M,Sports,Medium,C0],[3,M,Sports,Medium,C0],[4,M,Sports,Large,C0],[5,M,Sports,Extra Large,C0],[6,M,Sports,Extra Large,C0],[7,F,Sports,Small,C0],[8,F,Sports,Small,C0],[9,F,Sports,Medium,C0],[10,F,Luxury,Large,C0],[11,M,Fauily,Large,C1],[12,M,Fuuily,Extra Large,C1],[13,M,Family,Medium,C1],[14,M,Luxury,Extra Large,C1],[15,F,Luxury,Small,C1],[16,F,Luxury,Small,C1],[17,F,Luxury,Medium,C1],[18,F,Luxury,Medium,C1],[19,F,Luxury,Medium,C1],[20,F,Luxury,Large,C1]]
Consider the training examples shown in the above Table for a binary classification problem.
(a) Compute the Gini index for the overall collection of training examples.
(b) Compute the Gini index for the Customer ID attribute.
(c) Compute the Gini index for the Gender attribute.
(d) Compute the Gini index for the Car Type attribute using multiway split.
(e) Compute the Gini index for the Shirt Size attribute using multiway split.
 \table[[Customer ID,Gender,Car Type,Shirt Size,Class],[1,M,Family,Small,C0],[2,M,Sports,Medium,C0],[3,M,Sports,Medium,C0],[4,M,Sports,Large,C0],[5,M,Sports,Extra Large,C0],[6,M,Sports,Extra Large,C0],[7,F,Sports,Small,C0],[8,F,Sports,Small,C0],[9,F,Sports,Medium,C0],[10,F,Luxury,Large,C0],[11,M,Fauily,Large,C1],[12,M,Fuuily,Extra Large,C1],[13,M,Family,Medium,C1],[14,M,Luxury,Extra Large,C1],[15,F,Luxury,Small,C1],[16,F,Luxury,Small,C1],[17,F,Luxury,Medium,C1],[18,F,Luxury,Medium,C1],[19,F,Luxury,Medium,C1],[20,F,Luxury,Large,C1]] Consider the training

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!