Question: The code I was provided seems to have a problem. The value of f ( 0 . 9 5 ) is incorrect. And the output

The code I was provided seems to have a problem.
The value of f(0.95) is incorrect. And the output of the code of the solution provided is different from the output obtained by running c++.
I want to be provided with the correct code.
Code I was provided :
-----------------------------------
#include
#include
#include
#include
#include
#include
// Function to perform linear regression using the least-squares method
void linearRegression(const std::vector& x, const std::vector& y, double& alpha, double& beta){
int n = x.size();
double sumX =0, sumY =0, sumXY =0, sumXX =0;
for(int i =0; i n; i++){
sumX += x[i];
sumY += y[i];
sumXY += x[i]* y[i];
sumXX += x[i]* x[i];
}
beta =(n * sumXY - sumX * sumY)/(n * sumXX - sumX * sumX);
alpha =(sumY - beta * sumX)/ n;
}
// Function to calculate R^2(coefficient of determination)
double calculateRSquared(const std::vector& y, const std::vector& y_fit){
double meanY = std::accumulate(y.begin(), y.end(),0.0)/ y.size();
double ssTot =0, ssRes =0;
for(size_t i =0; i y.size(); i++){
ssTot +=(y[i]- meanY)*(y[i]- meanY);
ssRes +=(y[i]- y_fit[i])*(y[i]- y_fit[i]);
}
return 1-(ssRes / ssTot);
}
// Function to evaluate the spline at a given point x
double evaluateSpline(const std::vector& x, const std::vector& y, double x_eval){
int n = x.size();
std::vector h(n -1), alpha(n -1), l(n), mu(n), z(n), c(n), b(n -1), d(n -1);
// Calculate h and alpha
for(int i =1; i n -1; i++){
h[i]= x[i +1]- x[i];
alpha[i]=(3/ h[i])*(y[i +1]- y[i])-(3/ h[i -1])*(y[i]- y[i -1]);
}
// Set boundary conditions
l[0]=1;
mu[0]=0;
z[0]=0;
// Solve the tridiagonal system
for(int i =1; i n -1; i++){
l[i]=2*(x[i +1]- x[i -1])- h[i -1]* mu[i -1];
mu[i]= h[i]/ l[i];
z[i]=(alpha[i]- h[i -1]* z[i -1])/ l[i];
}
// Set boundary conditions
l[n -1]=1;
z[n -1]=0;
c[n -1]=0;
// Calculate the coefficients
for(int j = n -2; j >=0; j--){
c[j]= z[j]- mu[j]* c[j +1];
b[j]=(y[j +1]- y[j])/ h[j]- h[j]*(c[j +1]+2* c[j])/3;
d[j]=(c[j +1]- c[j])/(3* h[j]);
}
// Evaluate the spline at x_eval
int i = std::lower_bound(x.begin(), x.end(), x_eval)- x.begin()-1;
double dx = x_eval - x[i];
double result = y[i]+ b[i]* dx + c[i]* dx * dx + d[i]* dx * dx * dx;
return result;
}
int main(){
// Given data points
std::vector x ={0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0};
std::vector f ={0.2977,0.2738,0.3060,0.3342,0.3577,0.4479,0.4921,0.5917,0.6840,0.7547,0.8802};
// Part 1: Least-squares method for exponential fitting
std::vector y;
for(double val : f){
y.push_back(log(val)); // linearize
}
double alpha, beta;
linearRegression(x, y, alpha, beta);
double a = exp(alpha);
std::vector f_fit;
for(double val : x){
f_fit.push_back(a * exp(beta * val));
}
double rSquared = calculateRSquared(f, f_fit);
std::cout "Least-squares method results:" std::endl;
std::cout "a =" a std::endl;
std::cout "beta =" beta std::endl;
std::cout "Coefficient of determination (R^2)=" rSquared std::endl;
// Part 2: Third-order spline interpolation
double x_eval =0.95;
double f_eval = evaluateSpline(x, f, x_eval);
std::cout "
Spline interpolation result:" std::endl;
std::cout "f(" x_eval ")=" f_eval std::endl;
return 0;
}
-----------------------------------
 The code I was provided seems to have a problem. The

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!