Question: This information is also given for help Consider a long electrical wire of length L with radius Rw surrounded by an annular layer of insulation

This information is also given for help






Consider a long electrical wire of length L with radius Rw surrounded by an annular layer of insulation with outside radius Ri. The rate of energy production per unit volume in the electrical wire is a constant equal to Se. The outside surface of the insulation is at a temperature equal to To. The thermal conductivities of the electrical wire and the insulation are kW and ki, respectively. All answers should be written in terms of L,Se,Rw,Ri,To,kw and ki. Answer all parts of this question. a) Write out the four boundary conditions using qw and Tw and qi and Ti to denote the flux of heat and temperature in the electrical wire and the insulation, respectively. b) Determine an expression for the rate of heat transfer qw within the electrical wire as a function of r. c) Determine an expression for the rate of heat transfer qi within the insulation as a function of r. d) Determine the temperature profile Ti within the insulation as a function of r. e) Determine the temperature profile Tw within the electrical wire as a function of r. f) Calculate the rate of heat loss to the surroundings through the surface of the insulation. g) Calculate the maximum temperature in the electrical wire. Components of the stress tensor for a Newtonian fluid in spherical coordinates rr=[2rvr32(v)]=[2(r1v+rvr)32(v)]=[2(rsin1v+rvr+rvcot)32(v)]r==[rr(rv)+r1vr]==[rsin(sinv)+rsin1v]=r=[rsin1vr+rr(rv)] Components of the stress tensor for a Newtonian fluid in cylindrical coordinates rr=[2rvr32(v)]=[2(r1v+rvr)32(v)]zz=[2zvz32(v)]r=r=[rr(rv)+r1vr]z=z=[zv+r1vz]zr=rz=[rvz+zvr] Components of the stress tensor for a Newtonian fluid in rectangular coordinates xx=[2xvx32(v)]yy=[2yvy32(v)]zz=[2zvz32(v)]xy=yx=[yvx+xvy]yz=zy=[zvy+yvz]zx=xz=[xvz+zvx] Equation of motion in spherical coordinates for a Newtonian fluid with constant and . r-component (tvr+vrrvr+rvvr+rsinvvrrv2+v2)=rp+[r21r22(r2vr)+r2sin1(sinvr)+r2sin2122vr]+gr -component (tv+vrrv+rvv+rsinvv+rvrvrv2cot)=r1p+[r21r(r2rv)+r21(sin1(vsin))+r2sin2122v+r22vrr2sin22cosv]+g -component (tv+vrrv+rvv+rsinvv+rvvr+rvvcot)=rsin1p+[r21r(r2rv)+r21(sin1(vsin))+r2sin2122v+r2sin2vr+r2sin22cosv]+g Equation of motion in cylindrical coordinates for a Newtonian fluid with constant and . r-component (tvr+vrrvr+rvvrrv2+vzzvr)=rp+[r(r1r(rvr))+r2122vrr22v+z22vr]+gr -component (tv+vrrv+rvv+rvrv+vzzv)=r1p+[r(r1r(rv))+r2122v+r22vr+z22v]+gz-component(tvz+vrrvz+rvvz+vzzvz)=zp+[r1r(rrvz)+r2122vz+z22vz]+gz Equation of motion in rectangular coordinates for a Newtonian fluid with constant and : x-component (tvx+vxxvx+vyyvx+vzzvx)=xp+(x22vx+y22vx+z22vx)+gx y-component (tvy+vxxvy+vyyvy+vzzvy)=yp+(x22vy+y22vy+z22vy)+gy z-component (tvz+vxxvz+vyyvz+vzzvz)=zp+(x22vz+y22vz+z22vz)+gz
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
