Question: THIS NEEDS TO BE DONE IN C OR C++ PROGRAM . Give a like to anyone help me. Thanks! Lagrange Interpolation Problem Description: Use Lagrange




THIS NEEDS TO BE DONE IN C OR C++ PROGRAM. Give a like to anyone help me. Thanks!
Lagrange Interpolation Problem Description: Use Lagrange interpolation to interpolate the following functions: (a) f(x) = V1 + x2 (b) f(x) 1 1+25x2 using a set of n+1 regularly spaced nodes computed by the following equation: 2(k-1) Xx = -1 + ik = 1,2,3,......., n + 1 n Test your generated polynomial with different orders, n= 5, 10, 20 and compute the interpolation polynomial P.(x) at 41 regularly spaced points. For each value of xx the Lagrange polynomial approximation is output together with the exact /true value from the math library, also output the absolute error. Example Output: Lagrange interpolation MENU 1. Function A 2. Function 3. Quit Enter your choice: 1 WHEN 5 K Xk 0 1 2 3 4 5 6 7 P -1.0000000 1.4142140 -0.9500000 1.3802810 -0.9000000 1.3468090 -0.8500000 1.3139990 -0.8000000 1.2820420 -0.7500000 1.2511190 -0.7000000 1.2213990 -0.6500000 1.1930400 -0.6000000 1.1661900 -0.5500000 1.1409860 -0.5000000 1.1175530 -0.4500000 1.0960050 -0.4000000 1.0764470 -0.3500000 1.0589710 -0.3000000 1.0436600 .2500000 1.0305840 -0.2000000 1.0198040 TRUE VALUE 1.414213562 1.379311422 1.345362405 1.312440475 1.280624847 1.25 1.220655562 1.192686044 1.166190379 1.141271221 1.118033989 1.09658561 1.077032961 1.059481005 1.044030651 1.030776406 1.019803903 ABSOLUTE ERROR 4.38E-07 9.70E-04 1.45E-03 1.56E-03 1.42E-03 1.12E-03 7.43E-04 3.54E-04 3.79E-07 2.85E-04 4.81E-04 5.81E-04 5.86E-04 5.10E-04 3.71E-04 1.92E-04 9.73E-08 8 9 10 11 12 13 14 15 16 2 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 -0.1500000 1.0113680 -0.1000000 1.0053150 -0.0500000 1.0016730 0.0000000 1.0004570 0.0500000 1.0016730 0.1000000 1.0053150 0.1500000 1.0113680 0.2000000 1.0198040 0.2500000 1.0305840 0.3000000 1.0436600 0.3500000 1.0589710 0.4000000 1.0764470 0.4500000 1.0960050 0.5000000 1.1175530 0.5500000 1.1409860 0.6000000 1.1661900 0.6500000 1.1930400 0.7000000 1.2213990 0.7500000 1.2511190 0.8000000 1.2820420 0.8500000 1.3139990 0.9000000 1.3468090 0.9500000 1.3802810 1.0000000 1.4142140 1.011187421 1.004987562 1.00124922 1 1.00124922 1.004987562 1.011187421 1.019803903 1.030776406 1.044030651 1.059481005 1.077032961 1.09658561 1.118033989 1.141271221 1.166190379 1.192686044 1.220655562 1.25 1.280624847 1.312440475 1.345362405 1.379311422 1.414213562 1.81E-04 3.27E-04 4.24E-04 4.57E-04 4.24E-04 3.27E-04 1.81E-04 9.73E-08 1.92E-04 3.71E-04 5.10E-04 5.86E-04 5.81E-04 4.81E-04 2.85E-04 3.79E-07 3.54E-04 7.43E-04 1.12E-03 1.42E-03 1.56E-03 1.45E-03 9.70E-04 4.38E-07 WHEN n-10 .....display 41 column table....... WHEN n=15 ..........display 41 column table ........ MENU 1. Function A 2. Function B 3. Quit Enter your choice: 2 WHEN n 5 ......display 41 column table WHEN n=10 3 ...display 41 column table ........ WHEN 1=15 ......display 41 column table MENO 1. Function A 2. Function B 3. Quit Enter your choice: 3 Exit 4 Lagrange Interpolation Problem Description: Use Lagrange interpolation to interpolate the following functions: (a) f(x) = V1 + x2 (b) f(x) 1 1+25x2 using a set of n+1 regularly spaced nodes computed by the following equation: 2(k-1) Xx = -1 + ik = 1,2,3,......., n + 1 n Test your generated polynomial with different orders, n= 5, 10, 20 and compute the interpolation polynomial P.(x) at 41 regularly spaced points. For each value of xx the Lagrange polynomial approximation is output together with the exact /true value from the math library, also output the absolute error. Example Output: Lagrange interpolation MENU 1. Function A 2. Function 3. Quit Enter your choice: 1 WHEN 5 K Xk 0 1 2 3 4 5 6 7 P -1.0000000 1.4142140 -0.9500000 1.3802810 -0.9000000 1.3468090 -0.8500000 1.3139990 -0.8000000 1.2820420 -0.7500000 1.2511190 -0.7000000 1.2213990 -0.6500000 1.1930400 -0.6000000 1.1661900 -0.5500000 1.1409860 -0.5000000 1.1175530 -0.4500000 1.0960050 -0.4000000 1.0764470 -0.3500000 1.0589710 -0.3000000 1.0436600 .2500000 1.0305840 -0.2000000 1.0198040 TRUE VALUE 1.414213562 1.379311422 1.345362405 1.312440475 1.280624847 1.25 1.220655562 1.192686044 1.166190379 1.141271221 1.118033989 1.09658561 1.077032961 1.059481005 1.044030651 1.030776406 1.019803903 ABSOLUTE ERROR 4.38E-07 9.70E-04 1.45E-03 1.56E-03 1.42E-03 1.12E-03 7.43E-04 3.54E-04 3.79E-07 2.85E-04 4.81E-04 5.81E-04 5.86E-04 5.10E-04 3.71E-04 1.92E-04 9.73E-08 8 9 10 11 12 13 14 15 16 2 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 -0.1500000 1.0113680 -0.1000000 1.0053150 -0.0500000 1.0016730 0.0000000 1.0004570 0.0500000 1.0016730 0.1000000 1.0053150 0.1500000 1.0113680 0.2000000 1.0198040 0.2500000 1.0305840 0.3000000 1.0436600 0.3500000 1.0589710 0.4000000 1.0764470 0.4500000 1.0960050 0.5000000 1.1175530 0.5500000 1.1409860 0.6000000 1.1661900 0.6500000 1.1930400 0.7000000 1.2213990 0.7500000 1.2511190 0.8000000 1.2820420 0.8500000 1.3139990 0.9000000 1.3468090 0.9500000 1.3802810 1.0000000 1.4142140 1.011187421 1.004987562 1.00124922 1 1.00124922 1.004987562 1.011187421 1.019803903 1.030776406 1.044030651 1.059481005 1.077032961 1.09658561 1.118033989 1.141271221 1.166190379 1.192686044 1.220655562 1.25 1.280624847 1.312440475 1.345362405 1.379311422 1.414213562 1.81E-04 3.27E-04 4.24E-04 4.57E-04 4.24E-04 3.27E-04 1.81E-04 9.73E-08 1.92E-04 3.71E-04 5.10E-04 5.86E-04 5.81E-04 4.81E-04 2.85E-04 3.79E-07 3.54E-04 7.43E-04 1.12E-03 1.42E-03 1.56E-03 1.45E-03 9.70E-04 4.38E-07 WHEN n-10 .....display 41 column table....... WHEN n=15 ..........display 41 column table ........ MENU 1. Function A 2. Function B 3. Quit Enter your choice: 2 WHEN n 5 ......display 41 column table WHEN n=10 3 ...display 41 column table ........ WHEN 1=15 ......display 41 column table MENO 1. Function A 2. Function B 3. Quit Enter your choice: 3 Exit 4
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
