Question: Train this code and plot the loss function using tensorboard: import torch import torch.nn as nn import torch.optim as optim from torch.utils.tensorboard import SummaryWriter class
Train this code and plot the loss function using tensorboard: import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
class NameDetectornnModule:
def initself inputdim, hiddendim, outputdim:
superNameDetector selfinit
self.lstm nnLSTMinputdim, hiddendim, batchfirstTrue
self.linear nnLinearhiddendim,
self.lstm nnLSTM hiddendim, batchfirstTrue
self.linear nnLinearhiddendim, outputdim
self.softmax nnSoftmaxdim
def forwardself x:
out, self.lstmx
out torch.tanhout
out self.linearout
out, self.lstmout
out self.linearout
out self.softmaxout
return out
# Example usage
inputdim # Example input dimension
hiddendim
outputdim # Number of classes
model NameDetectorinputdim, hiddendim, outputdim
# Sample data generation replace with actual data loader
def generatedummydatanumsamples, inputdim, seqlen, numclasses:
X torch.randnnumsamples, seqlen, inputdim
y torch.randint numclasses, numsamples,
return X y
# Hyperparameters
numepochs
batchsize
learningrate
# Data
inputdim
seqlen
numclasses
Xtrain, ytrain generatedummydata inputdim, seqlen, numclasses
traindata torch.utils.data.TensorDatasetXtrain, ytrain
trainloader torch.utils.data.DataLoadertraindata, batchsizebatchsize, shuffleTrue
# Model, loss function, and optimizer
model NameDetectorinputdim, hiddendim, numclasses
criterion nnCrossEntropyLoss
optimizer optim.Adammodelparameters lrlearningrate
# TensorBoard writer
writer SummaryWriter
# Training loop
for epoch in rangenumepochs:
for iinputs labels in enumeratetrainloader:
outputs modelinputs
loss criterionoutputs labels
optimizer.zerograd
loss.backward
optimizer.step
# Log loss to TensorBoard
writer.addscalarLosstrain loss.item epoch lentrainloader i
printfEpoch epochnumepochs Loss: lossitem:f
writer.close
Step by Step Solution
There are 3 Steps involved in it
1 Expert Approved Answer
Step: 1 Unlock
Question Has Been Solved by an Expert!
Get step-by-step solutions from verified subject matter experts
Step: 2 Unlock
Step: 3 Unlock
