Question: Use Exponential smoothing forecasts with alpha of 0.1, 0.2, ..., 0.9 to predict January 2021 demand. Identify the value of alpha that results in the
- Use Exponential smoothing forecasts with alpha of 0.1, 0.2, ..., 0.9 to predict January 2021 demand. Identify the value of alpha that results in the lowest MAD.
- Find the monthly seasonal indices for the demand values using Simple Average (SA) method. Find the de-seasonalized demand values by dividing monthly demand by seasonal indices.
- Use regression to perform trend analysis on the de-seasonalized demand values. Is trend analysis suitable for this data? Find MAD, the seasonally adjusted trend forecasts for January through March 2021 and explain the Excel Regression output (trend equation, r, r-squared, goodness of model).
| Month/Yr. | PERIOD | PRICE | AIP | DIFF | ADV | DEMAND | |
| Jan. 2016 | 1 | 5.4 | 5.9 | 0.5 | 5.3 | 13.9 | |
| 2 | 5.5 | 6.6 | 1.1 | 6.8 | 14.5 | ||
| 3 | 6.0 | 6.4 | 0.4 | 7.3 | 14.7 | ||
| 4 | 6.1 | 6.1 | 0.0 | 7.3 | 14.9 | ||
| 5 | 5.9 | 6.4 | 0.5 | 7.2 | 14.9 | ||
| 6 | 5.9 | 6.3 | 0.4 | 6.5 | 14.6 | ||
| 7 | 5.9 | 6.0 | 0.1 | 6.8 | 14.1 | ||
| 8 | 6.8 | 6.0 | -0.8 | 5.0 | 12.0 | ||
| 9 | 6.8 | 5.8 | -1.0 | 5.8 | 14.2 | ||
| 10 | 6.4 | 6.3 | -0.1 | 5.5 | 13.9 | ||
| 11 | 6.5 | 6.3 | -0.2 | 6.5 | 13.9 | ||
| 12 | 6.3 | 6.2 | -0.1 | 6.3 | 13.8 | ||
| Jan. 2017 | 13 | 6.1 | 6.5 | 0.4 | 7.0 | 14.0 | |
| 14 | 6.1 | 6.6 | 0.5 | 7.7 | 14.5 | ||
| 15 | 6.0 | 6.3 | 0.3 | 6.8 | 16.0 | ||
| 16 | 6.4 | 6.7 | 0.3 | 6.8 | 15.7 | ||
| 17 | 6.2 | 6.5 | 0.3 | 7.1 | 15.8 | ||
| 18 | 6.0 | 6.8 | 0.8 | 7.0 | 15.2 | ||
| 19 | 6.1 | 6.6 | 0.5 | 7.2 | 15.9 | ||
| 20 | 6.4 | 6.1 | -0.3 | 7.5 | 16.2 | ||
| 21 | 6.0 | 6.1 | 0.1 | 7.8 | 15.0 | ||
| 22 | 6.2 | 6.2 | 0.0 | 8.2 | 16.9 | ||
| 23 | 6.1 | 6.0 | -0.1 | 8.3 | 17.1 | ||
| 24 | 6.0 | 6.2 | 0.2 | 8.4 | 16.9 | ||
| Jan. 2018 | 25 | 6.1 | 6.7 | 0.6 | 8.9 | 17.4 | |
| 26 | 5.9 | 6.9 | 1.0 | 9.1 | 17.7 | ||
| 27 | 6.0 | 5.8 | -0.2 | 9.3 | 17.6 | ||
| 28 | 6.3 | 5.8 | -0.5 | 9.4 | 18.4 | ||
| 29 | 6.0 | 6.0 | 0.0 | 9.3 | 18.6 | ||
| 30 | 5.7 | 6.7 | 1.0 | 9.4 | 17.4 | ||
| 31 | 5.6 | 6.4 | 0.8 | 9.5 | 18.4 | ||
| 32 | 6.2 | 7.0 | 0.8 | 9.6 | 17.6 | ||
| 33 | 6.4 | 7.2 | 0.8 | 9.7 | 16.7 | ||
| 34 | 6.5 | 5.9 | -0.6 | 9.9 | 18.2 | ||
| 35 | 6.2 | 6.0 | -0.2 | 9.8 | 18.5 | ||
| 36 | 6.7 | 6.2 | -0.5 | 9.9 | 19.1 | ||
| Jan. 2019 | 37 | 6.9 | 6.0 | -0.9 | 10.1 | 19.0 | |
| 38 | 6.9 | 6.3 | -0.6 | 10.2 | 19.0 | ||
| 39 | 6.7 | 6.5 | -0.2 | 10.5 | 19.8 | ||
| 40 | 7.0 | 6.0 | -1.0 | 10.3 | 19.8 | ||
| 41 | 7.1 | 6.1 | -1.0 | 9.9 | 20.0 | ||
| 42 | 7.2 | 6.3 | -0.9 | 10.5 | 20.9 | ||
| 43 | 7.2 | 6.4 | -0.8 | 10.6 | 19.6 | ||
| 44 | 7.3 | 6.5 | -0.8 | 10.5 | 19.5 | ||
| 45 | 7.2 | 6.0 | -1.2 | 11.6 | 18.4 | ||
| 46 | 7.1 | 6.2 | -0.9 | 10.1 | 19.3 | ||
| 47 | 6.9 | 5.9 | -1.0 | 10.3 | 19.3 | ||
| 48 | 7.2 | 6.0 | -1.2 | 10.7 | 19.9 | ||
| Jan. 2020 | 49 | 7.3 | 6.4 | -0.9 | 10.9 | 20.0 | |
| 50 | 7.4 | 6.5 | -0.9 | 10.8 | 20.1 | ||
| 51 | 7.5 | 6.5 | -1.0 | 11.1 | 20.1 | ||
| 52 | 7.0 | 6.2 | -0.8 | 11.2 | 20.2 | ||
| 53 | 6.8 | 6.8 | 0.0 | 11.6 | 21.1 | ||
| 54 | 7.4 | 6.9 | -0.5 | 11.5 | 20.6 | ||
| 55 | 7.3 | 6.5 | -0.8 | 11.6 | 20.7 | ||
| 56 | 7.3 | 6.9 | -0.4 | 11.9 | 21.3 | ||
| 57 | 7.2 | 7.0 | -0.2 | 11.8 | 21.4 | ||
| 58 | 7.5 | 6.8 | -0.7 | 11.9 | 21.5 | ||
| 59 | 7.5 | 6.8 | -0.7 | 12.0 | 21.8 | ||
| 60 | 7.5 | 6.5 | -1.0 | 11.9 | 21.5 | ||
| Jan. 2021 | 61 | ||||||
| Feb. 2021 | 62 | ||||||
| Mar. 2021 | 63 |
Step by Step Solution
There are 3 Steps involved in it
1 Expert Approved Answer
Step: 1 Unlock
Question Has Been Solved by an Expert!
Get step-by-step solutions from verified subject matter experts
Step: 2 Unlock
Step: 3 Unlock
