Question: Use Laplace Transforms to solve the initial value problem where [y^(')-2y=f(x),y(0)=0]f(x)={(3,0
Use Laplace Transforms to solve the initial value problem where [y^(')-2y=f(x),y(0)=0]f(x)={(3,0<=x and x<3):}4,3<=xy(x)={((3)/(2)e^(2x)-(3)/(2),0<=x and x<3):}(3)/(2)e^(2x)+2+(1)/(2)e^(-6+2x),3<=xy(x)={(-(3)/(2)e^(2x)+(3)/(2),0<=x and x<3):}(3)/(2)e^(2x)-2+(7)/(2)e^(-6+2x),3<=xy(x)={((3)/(2)e^(2x)+(3)/(2),0<=x and x<3):}(3)/(2)e^(2x)-2+(7)/(2)e^(-6+2x),3<=xy(x)={(-(3)/(2)e^(2x)+(3)/(2),0<=x and x<3):}(3)/(2)e^(2x)-2+(1)/(2)e^(-6+2x),3<=xy(x)={((3)/(2)e^(2x)-(3)/(2),0<=x and x<3):}(3)/(2)e^(2x)-2+(1)/(2)e^(-6+2x),3<=x
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
