Question: Using Pyhton to answer the question, show the code and plots. Thank you so much! Date United States 12/30/2007 2278 1/6/2008 2199 1/13/2008 2230 1/20/2008

Using Pyhton to answer the question, show the code and plots. Thank you so much!

Using Pyhton to answer the question, show the code and plots. Thankyou so much! Date United States 12/30/2007 2278 1/6/2008 2199 1/13/2008 2230

Date United States
12/30/2007 2278
1/6/2008 2199
1/13/2008 2230
1/20/2008 2921
1/27/2008 3880
2/3/2008 4928
2/10/2008 5352
2/17/2008 5805
2/24/2008 5050
3/2/2008 4059
3/9/2008 3229
3/16/2008 2592
3/23/2008 2172
3/30/2008 1776
4/6/2008 1508
4/13/2008 1331
4/20/2008 1180
4/27/2008 1046
5/4/2008 947
5/11/2008 922
5/18/2008 873
5/25/2008 828
6/1/2008 770
6/8/2008 727
6/15/2008 713
6/22/2008 662
6/29/2008 646
7/6/2008 665
7/13/2008 638
7/20/2008 627
7/27/2008 634
8/3/2008 648
8/10/2008 684
8/17/2008 710
8/24/2008 771
8/31/2008 903
9/7/2008 1009
9/14/2008 1114
9/21/2008 1221
9/28/2008 1275
10/5/2008 1334
10/12/2008 1404
10/19/2008 1543
10/26/2008 1659
11/2/2008 1747
11/9/2008 1953
11/16/2008 2194
11/23/2008 1969
11/30/2008 2045
12/7/2008 1938
12/14/2008 1870
12/21/2008 1942
12/28/2008 2100

1/20/2008 2921 1/27/2008 3880 2/3/2008 4928 2/10/2008 5352 2/17/2008 5805 2/24/2008 5050

Parameters Initial conditions exedfile("parse.py") # Constants in model beta = 1.0/1000. gamma = 1./2. # Function to calculate derivatives of s ( t), 1(t), and R (t) de deriv (x, t) : ifc = beta*x[@]*x[1] rec = gamma*x[1] keturn np.array([-ifc, ifc-rec, rec]). # Solve ODE using the " odeint " library in Scipy time = np.linspace(a, 60, 1000) xinit = np.array(100, 1, 0]) x = odeint(deriv, xtutt, ttme) # Plot the solutions plt . figure () po, = plt.plot(xrange(52), s[1][0:52]) pi, = plt.plot(time, x[:,1]) plt.legend([po, p1], ["data", "I(t)"]) plt.xlabel('t(weeks)') plt.ylabel('National population) plt.show() Parameters Initial conditions exedfile("parse.py") # Constants in model beta = 1.0/1000. gamma = 1./2. # Function to calculate derivatives of s ( t), 1(t), and R (t) de deriv (x, t) : ifc = beta*x[@]*x[1] rec = gamma*x[1] keturn np.array([-ifc, ifc-rec, rec]). # Solve ODE using the " odeint " library in Scipy time = np.linspace(a, 60, 1000) xinit = np.array(100, 1, 0]) x = odeint(deriv, xtutt, ttme) # Plot the solutions plt . figure () po, = plt.plot(xrange(52), s[1][0:52]) pi, = plt.plot(time, x[:,1]) plt.legend([po, p1], ["data", "I(t)"]) plt.xlabel('t(weeks)') plt.ylabel('National population) plt.show()

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!