Question: Using scikit learn, how to perform Linear Regression to predict a position at a given time. I have a csv file containing yaw, pitch, and
Using scikit learn, how to perform Linear Regression to predict a position at a given time. I have a csv file containing yaw, pitch, and roll position data for each time and would like to predict what the new position would be for a given time. For example, what would the predicted position be at time 31 from using the data of times 1 to 30.
The csv file contains the following:
| time | yaw | pitch | roll |
| 1 | -0.7178583 | -4.4662444 | -3.32 |
| 2 | -0.7178583 | -4.4662444 | -3.32 |
| 3 | -0.7848583 | -4.4552444 | -3.281 |
| 4 | -0.7848583 | -4.4552444 | -3.281 |
| 5 | -0.8318583 | -4.5232444 | -3.225 |
| 6 | -0.8318583 | -4.5232444 | -3.225 |
| 7 | -0.8728583 | -4.6712444 | -3.133 |
| 8 | -0.8728583 | -4.6712444 | -3.133 |
| 9 | -0.9238583 | -5.0042444 | -3.018 |
| 10 | -0.9238583 | -5.0042444 | -3.018 |
| 11 | -0.8728583 | -5.3362444 | -2.919 |
| 12 | -0.8728583 | -5.3362444 | -2.919 |
| 13 | -0.6458583 | -5.6482444 | -2.878 |
| 14 | -0.6458583 | -5.6482444 | -2.878 |
| 15 | -0.2948583 | -5.7642444 | -2.928 |
| 16 | -0.2948583 | -5.7642444 | -2.928 |
| 17 | 0.13114167 | -5.7862444 | -2.951 |
| 18 | 0.13114167 | -5.7862444 | -2.951 |
| 19 | 0.53414167 | -5.9662444 | -2.935 |
| 20 | 0.53414167 | -5.9662444 | -2.935 |
| 21 | 0.87514167 | -6.3692444 | -2.908 |
| 22 | 0.87514167 | -6.3692444 | -2.908 |
| 23 | 1.14814167 | -6.9052444 | -2.909 |
| 24 | 1.14814167 | -6.9052444 | -2.909 |
| 25 | 1.40714167 | -7.4942444 | -2.91 |
| 26 | 1.40714167 | -7.4942444 | -2.91 |
| 27 | 1.62214167 | -8.0082444 | -2.89 |
| 28 | 1.62214167 | -8.0082444 | -2.89 |
| 29 | 1.71014167 | -8.3052444 | -2.856 |
| 30 | 1.71014167 | -8.3052444 | -2.856 |
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
