Question: Using this solutions above, write a formal report with the given procedures. The solutions is below a) To begin with, IB is assumed to be

Using this solutions above, write a formal report with the given procedures.

The solutions is below

a)

To begin with, IB is assumed to be negligible. Hence, we have

 

RB(Q1) = R1 + R2

  R1 + R2

R1 = 72Ω

R2 = 63Ω

 

Therefore, RB(Q1)  = 72 x 63

 72 + 63

 

         = 34.067Ω

 

(i) VB =        R2     x  VCC

  R1 + R2 

           VB =       63        x 18

     72 + 63

                       VB =    8.4V

 

We then apply Kirchhoff’s Voltage Law

 

VB – IB(Q1)RB(Q1)  – VBE(Q1)  – IB(Q1)RE(Q1)  =  0

VBE(Q1) = VB – 2V

VBE(Q1) = 8.4V – 2V

VBE(Q1) = 0.7V

 

= 2.7 – IB(Q1)RB(Q1) – 0.7 – IB(Q1) x (1 + β) x 1A

 

IB(Q1) =          2.7 – 0.7

  RB(Q1) + 1000(1 + β)

IB(Q1) =                  2

   34.067+151 x 1000  

IB(Q1) =  0.1324µA

 

Now,

        VB(Q1) = 2.7 – IB(Q1) x RB(Q1)

         VB(Q1)  = 2.7 – (0.1324 x 10-6) x 34.067

         VB(Q1)  = 2.7V

 

 

(ii) VE(Q1)  = IE(Q1)  x RE(Q1)

 

But IC(Q1) = IB(Q1)  x β = 0.1324 x 10-6 x 150

       IC(Q1) = 0.1986 x 10-6 A

       IC(Q1) = 0.1986µA

 

IE(Q1) = IB(Q1) (1 + β)

         = 0.1324 x 10-6 x (1 +β)

         = 0.1324 x 10-6 x (1 + 150)

         = 0.1999 x 10-6

         = 0.2µA

 

Therefore, VE(Q1) = 0.2 x 10-6 x 100

                     VE(Q1) = 0.2mV

 

 

(iii)  

                 IE(Q1) = IB(Q1) (1 + β) 

         = 0.1324 x 10-6 x (1 +β)

         = 0.1324 x 10-6 x (1 + 150)

         = 0.1999 x 10-6

         = 0.2µA

 

(iv) VCC - IC(Q1)RC = VC(Q1)

18 – (0.1986 x 10-6 x 48) = VC(Q1)

VC(Q1) = 17.9999V = 18V

VC(Q1) = VB(Q2) = 18V

 

 

(v) From the solution in (iv) we can see that VC(Q1) = VB(Q2). Therefore, the value for VB(Q2) is 18V.

(vi) VB(Q2) - VBE(Q1) = VE(Q2)

 VE(Q2) = 18 – 0.7

VE(Q2) = 17.3V

 

 

(vii) VE(Q2) = R3 + IE(Q2)

IE(Q2)  =VE(Q2) - R3

IE(Q2)  = 17.3 – 1000

IE(Q2)  = 0.0173A

 

 

Also, we find out that VC(Q2) = VCC =18V.

 

(viii) IC(Q2)  =  β(Q2)    x  IE(Q2)

1 +β(Q2)

                                 = 100     x 0.0173

                                   100 + 1

          = 17.128 x 10-3A

                                 = 17.128mA

 

 

 

(b)

 

The emitter follower is omitted and the output from the collector of Q1 is capacitively coupled to the 250Ω load, RL.

 

Vout  = -β x Ib (Rc //Rl)

 

Ib(Q1) = Vs

rTH

rTH = VT

       Ib(Q1)

rTH = 26x10-6

             0.1324 x 10-6

rTH = 196.375kΩ

 

 

 

 

Ib(Q1) = Vs

rTH

Ib(Q1) = 15 x 10-3

            196375

 

Ib(Q1) = 7.64 x 10-8A

 

 

 

Vout = -150 x 7.64 x10-8 x (48 x 250)

                                                (48 + 250)

 

Vout = -4.615 x 10-4

Vout   = -461.5µV

 

 

 

Therefore, the output voltage across the 250Ω load is -461.5µV.

Use this procedure for the report :

i. Problem Description/Formulatio

ii. Solution Approach and Calculations
iii. Results and Discussion

Step by Step Solution

3.43 Rating (143 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Electrical Engineering Questions!