Question: {x,y} after running the trig identities section code 6, b . i) What's going on in Enter a cleared 2D perpendicular frame: 2D? Clear[perpframe, s,

{x,y} after running the trig identities section code
6, b . i) What's going on in Enter a cleared 2D perpendicular frame: 2D? Clear[perpframe, s, x, y]; (perpframe[1], perpframe[2]) (cos[s], Sin[s]), (Cos[s Pi/2], sin[s Pi/2])) Now enter a cleared 2D point x.y; and calculate (x.y; perpframe[1]) perpframe[ 1]+ (ix.y; perpframe[2]) perpframe[2] clear[x, yl; calculation -x, y perpframe[1] perpframe[1] + (x, y) perpframe[2] perpframe[2] Apply trig identities: TrigExpand[(x, y) . perpframe[1] perpframe[1]+(x, y) . perpframe [2] perpframe [2]] What does this calculation illustrate? Try to describe in words the relationship between the location of tx. y; and the location of (tx.y) perpframe[I]) perpframe[l] 6, b . i) What's going on in Enter a cleared 2D perpendicular frame: 2D? Clear[perpframe, s, x, y]; (perpframe[1], perpframe[2]) (cos[s], Sin[s]), (Cos[s Pi/2], sin[s Pi/2])) Now enter a cleared 2D point x.y; and calculate (x.y; perpframe[1]) perpframe[ 1]+ (ix.y; perpframe[2]) perpframe[2] clear[x, yl; calculation -x, y perpframe[1] perpframe[1] + (x, y) perpframe[2] perpframe[2] Apply trig identities: TrigExpand[(x, y) . perpframe[1] perpframe[1]+(x, y) . perpframe [2] perpframe [2]] What does this calculation illustrate? Try to describe in words the relationship between the location of tx. y; and the location of (tx.y) perpframe[I]) perpframe[l]
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
