Question: Show that the softmax function [ text { softmax }: boldsymbol{z} mapsto frac{exp (boldsymbol{z})}{sum_{k} exp left(z_{k} ight)} ] satisfies the invariance property: [ operatorname{softmax}(boldsymbol{z})=operatorname{softmax}(boldsymbol{z}+c times
Show that the softmax function
\[ \text { softmax }: \boldsymbol{z} \mapsto \frac{\exp (\boldsymbol{z})}{\sum_{k} \exp \left(z_{k}\right)} \]
satisfies the invariance property:
\[ \operatorname{softmax}(\boldsymbol{z})=\operatorname{softmax}(\boldsymbol{z}+c \times \mathbf{1}), \text { for any constant } c \]
Step by Step Solution
3.48 Rating (165 Votes )
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
