Question: Under the assumption that the data have a joint normal distribution, show that n 1/2 k r,s,t,u has a limiting covariance matrix given by n
Under the assumption that the data have a joint normal distribution, show that n 1/2 k
r,s,t,u has a limiting covariance matrix given by n cov (k i,j,k,l
, k r,s,t,u) → κ
i,rκ
j,sκ
k,tκ
l,u
[4!].
Hence show that n 1/2 pr̅4 has a limiting normal distribution with mean zero and variance 8p 2
+ 16p.
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
