Question: (a) Use Newtons method with x1 1 to find the root of the equation x3 2 x 1 correct to six decimal places.
(a) Use Newton’s method with x1 − 1 to find the root of the equation x3 2 x − 1 correct to six decimal places.
(b) Solve the equation in part
(a) using x1 − 0.6 as the initial approximation.
(c) Solve the equation in part
(a) using x1 − 0.57. (You definitely need a programmable calculator for this part.)
;
(d) Graph f sxd − x3 2 x 2 1 and its tangent lines at x1 − 1, 0.6, and 0.57 to explain why Newton’s method is so sensitive to the value of the initial approximation.
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
