Question: Transform the system [begin{aligned}& underline{dot{mathbf{x}}}=mathbf{A} mathbf{x}+mathbf{B u} & mathbf{y}=mathbf{C x}end{aligned}] into observable canonical form, given that the system matrices are [ mathbf{A}=left[begin{array}{lll} 1 & 2
Transform the system
\[\begin{aligned}& \underline{\dot{\mathbf{x}}}=\mathbf{A} \mathbf{x}+\mathbf{B u} \\& \mathbf{y}=\mathbf{C x}\end{aligned}\]

into observable canonical form, given that the system matrices are \[
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 2 \\
1 & 4 & 3 \\
3 & 1 & 3 \end{array}ight] \quad \mathbf{B}=\left[\begin{array}{l}
1 \\
0 \\
1 \end{array}ight] \quad \mathbf{C}=\left[\begin{array}{lll}
2 & 1 & 1 \end{array}ight]
\]
u bn 5 b b 1 S -a2 -a Figure 7.9 System in observable canonical form. S y
Step by Step Solution
3.39 Rating (171 Votes )
There are 3 Steps involved in it
The Observability Matrix for this system is OMleftbeginarrayccc 2 1 1 ... View full answer
Get step-by-step solutions from verified subject matter experts
