Question: Determine matrix (mathbf{A}) in the state equations ((dot{mathbf{X}}=mathbf{A X}+mathbf{B} u)) for the block-diagram of Fig. 1.5 if (mathbf{X}=left[begin{array}{l}x_{1}(t) x_{2}(t)end{array}ight]). 1) (left[begin{array}{cc}0 & -beta
Determine matrix \(\mathbf{A}\) in the state equations \((\dot{\mathbf{X}}=\mathbf{A X}+\mathbf{B} u)\) for the block-diagram of Fig. 1.5 if \(\mathbf{X}=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}ight]\).
1) \(\left[\begin{array}{cc}0 & -\beta \\ 1 & -\alpha\end{array}ight]\)
2) \(\left[\begin{array}{cc}-\alpha & -\beta \\ 1 & 0\end{array}ight]\)
3) \(\left[\begin{array}{cc}0 & 1 \\ -\beta & -\alpha\end{array}ight]\)
4) \(\left[\begin{array}{ll}-\alpha & 1 \\ -\beta & 0\end{array}ight]\)
Figure 1.5

U(s)- S B 1 X2(s) X(s) S
Step by Step Solution
3.33 Rating (156 Votes )
There are 3 Steps involved in it
Choice 2 is the a... View full answer
Get step-by-step solutions from verified subject matter experts
