Question: Suppose that 0 < f (t) < Meat and 0 < f (t) < Keat for t < 0, where f is continuous. If the

Suppose that 0 < f (t) < Meat and 0 < f ’(t) < Keat for t < 0, where f’ is continuous. If the Laplace transform of and the Laplace transform of f'(t) is G(s), show that G(s) = sF(s) - f(0) s > a

Step by Step Solution

3.47 Rating (177 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

Gs ftest dt Integrate by parts with u et dv ft d... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Document Format (1 attachment)

Word file Icon

M-C-I (316).docx

120 KBs Word File

Students Have Also Explored These Related Calculus Questions!