# Consider the following linear programming problem. Maximize Z = 2x1 + 4x2 + 3x3 + 2x4 +

## Question:

Maximize Z = 2x1 + 4x2 + 3x3 + 2x4 + 5x5 + 3x6,

subject to

and

xj ‰¥ 0, for j = 1, 2, . . . , 6.

(a) Rewrite this problem in a form that demonstrates that it possesses the special structure for multidivisional problems. Identify the variables and constraints for the master problem and each subproblem.

(b) Construct the corresponding table of constraint coefficients having the block angular structure shown in Table 23.4. (Include only nonzero coefficients, and draw a box around each block of these coefficients to emphasize this structure.)

Fantastic news! We've Found the answer you've been seeking!

## Step by Step Answer:

**Related Book For**

## Introduction to Operations Research

**ISBN:** 978-1259162985

10th edition

**Authors:** Frederick S. Hillier, Gerald J. Lieberman