Flying Buttress (a) A symmetric building has a roof sloping upward at 35.0 above the horizontal on

Question:

Flying Buttress
(a) A symmetric building has a roof sloping upward at 35.0° above the horizontal on each side. If each side of the uniform roof weighs 10,000 N, find the horizontal force that this roof exerts at the top of the wall, which tends to push out the walls. Which type of building would be more in danger of collapsing: one with tall walls or one with short walls? Explain.
(b) As you saw in part (a), tall walls are in danger of collapsing from the weight of the roof. This problem plagued the ancient builders of large structures. A solution used in the great Gothic cathedrals during the 1200 was the flying buttress, a stone support running between the walls and the ground that helped to hold in the walls. A Gothic church has a uniform roof weighing a total of 20,000 N and rising at 40° above the horizontal at each wall. The walls are 40 m tall, and a flying buttress meets each wall 10 m below the base of the roof. What horizontal force must this flying buttress apply to the wall?
Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Mechanics of Materials

ISBN: 978-0495438076

7th edition

Authors: James M. Gere, Barry J. Goodno

Question Posted: