Question: Let A be an n x n symmetric matrix, and suppose that Rn has the standard Inner product. Prove that if (u. Au) = (u,

Let A be an n x n symmetric matrix, and suppose that Rn has the standard Inner product. Prove that if (u. Au) = (u, u) for all u In Rn, then A = In.

Step by Step Solution

3.32 Rating (152 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

Let u col i I n Then 1 u u uAu a ii and thus the diagonal entries of ... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Document Format (1 attachment)

Word file Icon

951-M-L-A-L-S (7046).docx

120 KBs Word File

Students Have Also Explored These Related Linear Algebra Questions!