Question: Let (x) = tan 2 x and g(x) = sec 2 x. (a) Use an identity and prove '(x) = g'(x) without directly computing '(x)
Let ƒ(x) = tan2 x and g(x) = sec2x.
(a) Use an identity and prove ƒ'(x) = g'(x) without directly computing ƒ'(x) and g'(x).
(b) Now verify the result in (a) by directly computing ƒ'(x) and g'(x).
Step by Step Solution
3.47 Rating (147 Votes )
There are 3 Steps involved in it
a Using the identity 1 tan 2 x sec 2 x we have 1 x gx Taking the de... View full answer
Get step-by-step solutions from verified subject matter experts
