Question: The perceptron model y = f ( x ) = sign ( w T x + b ) y = f ( x ) =
The perceptron model y=f(x)=sign(wTx+b)y=f(x)=sign(wTx+b) can be used to learn a binary classifier from training data.
a. Assume there are two training samples. The positive one is x1=(2,1)Tx1=(2,1)T; the negative one is x2=(1,0)Tx2=(1,0)T. The learning rate η=1η=1. Starting from w=(1,1)Tw=(1,1)T and b=0b=0, solve the parameters of the classifier.
b. Assume there are four training samples. The positive samples are x1=(1,1)Tx1=(1,1)T and x2=x2= (0,0)T(0,0)T; the negative samples are x3=(1,0)Tx3=(1,0)T and x4=(0,1)Tx4=(0,1)T. Can we classify all training samples correctly using the perceptron model? Why?
Step by Step Solution
3.48 Rating (158 Votes )
There are 3 Steps involved in it
a Iteration 1 x2 misclassified ww y2x2 0 1 bb y 1 Iteration 2 x misclassified w wyx ... View full answer
Get step-by-step solutions from verified subject matter experts
