Question: Consider the function (mathbf{h}left(mathbf{Z}_{1}, mathbf{Z}_{2} ight)) for the U-statistic in (1.22). (a) Show [operatorname{Var}left[widetilde{mathbf{h}}_{1}left(mathbf{Z}_{1} ight) ight]=Eleft(mathbf{h}_{1}left(mathbf{Z}_{1} ight) mathbf{h}_{1}^{top}left(mathbf{Z}_{1} ight) ight)-boldsymbol{theta} boldsymbol{theta}^{top}] (b) Use the iterated

Consider the function \(\mathbf{h}\left(\mathbf{Z}_{1}, \mathbf{Z}_{2}\right)\) for the U-statistic in (1.22).

(a) Show

\[\operatorname{Var}\left[\widetilde{\mathbf{h}}_{1}\left(\mathbf{Z}_{1}\right)\right]=E\left(\mathbf{h}_{1}\left(\mathbf{Z}_{1}\right) \mathbf{h}_{1}^{\top}\left(\mathbf{Z}_{1}\right)\right)-\boldsymbol{\theta} \boldsymbol{\theta}^{\top}\]

(b) Use the iterated conditional expectation to show

\[E\left(\mathbf{h}_{1}\left(\mathbf{Z}_{1}\right) \mathbf{h}_{1}^{\top}\left(\mathbf{Z}_{1}\right)\right)=E\left(\mathbf{h}\left(\mathbf{Z}_{1}, \mathbf{Z}_{2}\right) \mathbf{h}^{\top}\left(\mathbf{Z}_{1}, \mathbf{Z}_{3}\right)\right) .\]

Step by Step Solution

3.38 Rating (160 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

a To show that operatornameVarleftwidetildemathbfh1leftmathbfZ1 ight ightEleftmathbfh1leftmathbfZ1 ight mathbfh1topleftmathbfZ1 ight ightboldsymbolthe... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Elementary Statistics In Social Research Questions!