Question: Consider the nonrelativistic Schrodinger equation for a particle moving in a time dependent, 3-dimensional potential well: (a) Seek a geometric-optics solution to this equation with

Consider the nonrelativistic Schrödinger equation for a particle moving in a time dependent, 3-dimensional potential well:


ay i t 2 = - [2 / (+/V) * + V


(a) Seek a geometric-optics solution to this equation with the form ψ = AeiS/ℏ, where A and V are assumed to vary on a length scale L and timescale T long compared to those, 1/k and 1/ω, on which S varies. Show that the leading order terms in the two-length scale expansion of the Schrödinger equation give the Hamilton-Jacobi equation


(X.) 2m + V (x, t) . V (7.51)


Our notation φ ≡ S/ℏ for the phase φ of the wave function ψ is motivated by the fact that the geometric-optics limit of quantum mechanics is classical mechanics, and the function S = ℏφ becomes, in that limit, “Hamilton’s principal function,” which obeys the Hamilton-Jacobi equation.(b) From Eq. (7.52a) derive the equation of motion for the rays (which of course is identical to the equation of motion for a wave packet and therefore is also the equation of motion for a classical particle):


image


where p = ∇S.


(c) Derive the propagation equation for the wave amplitude A and show that it implies


image


Interpret this equation quantum mechanically.

ay i t 2 = - [2 / (+/V) * + V (X.) 2m + V (x, t) . V (7.51)

Step by Step Solution

3.43 Rating (162 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

To find a geometricoptics solution to the timedependent Schrdinger equation we assume that the wavefunction has the form A eiS where A and V vary on a length scale L and timescale T which are long com... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Modern Classical Physics Questions!