Question: We are given m data points and we seek an hyperplane where and that best fits the given points, in the sense of a minimum
We are given m data points
and we seek an hyperplane
where
and
that best “fits” the given points, in the sense of a minimum sum of squared distances criterion.
Formally, we need to solve the optimization problem

where dist
is the Euclidean distance from a point d to
. Here the constraint on c is imposed without loss of generality, in a way that does not favor a particular direction in space.
1. dShow that the distance from a given point
is given by
![]()
2. Show that the problem can be expressed as

where f0 is a certain quadratic function, which you will determine.
3. Show that the problem can be reduced to


4. Explain how to find the hyperplane via SVD.
d,..., dm R,
Step by Step Solution
3.52 Rating (176 Votes )
There are 3 Steps involved in it
1 We have from 26 that 2 where is the barycenter average of the given points 3 ... View full answer
Get step-by-step solutions from verified subject matter experts
