Question: At (t=0), a wave pulse has a shape given by the timeindependent wave function [f(x)=frac{a}{b^{2}+x^{2}}] where (a=0.030 mathrm{~m}^{3}) and (b=2.0 mathrm{~m}). (a) If the pulse

At \(t=0\), a wave pulse has a shape given by the timeindependent wave function

\[f(x)=\frac{a}{b^{2}+x^{2}}\]

where \(a=0.030 \mathrm{~m}^{3}\) and \(b=2.0 \mathrm{~m}\).

(a) If the pulse travels in the positive \(x\) direction at a wave speed of \(1.75 \mathrm{~m} / \mathrm{s}\), write the time-dependent wave function \(f(x, t)\) for this transverse wave.

(b) Plot the time-dependent wave function \(f(x, t)\) at \(t=-0.50 \mathrm{~s}\) and at \(t=+0.50 \mathrm{~s}\) over the range of \(x\) in which \(f(x, t)\) is substantially changing.

(c) Plot the displacement curve at \(x=2.0 \mathrm{~m}\).

Step by Step Solution

3.40 Rating (159 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Particle Physics Questions!