Question: 1. Consider the output layer of a Convolutional Neural Network how many classes are there: 1 self . fcl=nn. Linear(out_2*x*x, 5) Enter answer here 2.


1. Consider the output layer of a Convolutional Neural Network how many classes are there: 1 self . fcl=nn. Linear(out_2*x*x, 5) Enter answer here 2. How many non-convolutional layers dose the following neural network class or module have: class CNN (nn. Module) : # Contructor def _init_(self, out_1=16, out_2=32): super (CNN, self) ._init_( ) self. cnnl = nn. Conv2d( in_channels=1, out_channels=out_1, kernel_size=5, padding=2) self . maxpool1=nn. MaxPool2d (kernel_size=2) self . cnn2 = nn. Conv2d( in_channels=out_1, out_channels=out_2, kernel_size=5, stride=1, padd ing=2) self . maxpool2=nn . MaxPool2d (kernel_size=2) self . fel = nn. Linear(out_2 * 4 * 4, 10) # Prediction def forward (self, x) : x = self . cnnl(x) x = torch. relu(x) x = self . maxpooll (x) * = self . cnn2 (x) x = torch. relu(x) * = self .maxpool2 (x) x = x. view(x.size(0), -1) x = self . fcl(x) return x
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
