Question: 7 . 6 . Let Z n be 2 ( n ) . Then the m g f of Z n is ( 1 -

7.6.Let Zn be 2(n). Then the mgf of Zn is (1-2t)-n2,t12. Then mean and variance
of n and 2n respectively. Let Yn=Zn-n2n2.
(a). Find the mgfMn(t) of Yn
(b). Compute the limit limnMn(t).
Let xn be a gamma distribution with parameter =n and , where is not a
function of n. Let Yn=xnn.
(a). Find the mgfMn(t) of Yn
(b). Compute the limit limnMn(t).
Let Zn be 2(n) and let Wn=Znn2.
(a). Find the mgf Mn(t) of Wn
(b). Compute the limit limnMn(t).
Let Zn be a Poisson distribution with parameter =n. Let a random variable
Yn=Zn-nn2.
(a). Find the mgfMn(t) of Yn
(b). Compute the limit limnMn(t).
Let xn be a binomial random with parameters n and p.
(a). Find the mgf of xn.
Let
Zn=xn-npnpq2.
(b). Find the mgf MZn(t) of Zn.
(c). Compute the limit limnMZn(t).
Let x be a Poisson distribution with mean .
(a). Let
Z=x-2.
Find the mgfMZ(t) of Z.
(b). Compute the limit limMZ(t).6.6
 7.6.Let Zn be 2(n). Then the mgf of Zn is (1-2t)-n2,t12.

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!