Question: ( a ) Modify the function ex _ with 2 eqs to solve the IVP ( 4 ) for 0 t 6 0 using the

(a) Modify the function ex_with 2eqs to solve the IVP (4) for 0t60 using the MATLAB
routine ode45. Call the new function LAB04ex1.
Let t,Y(note the upper case Y) be the output of ode 45 and y and v the unknown functions.
Use the following commands to define the ODE:
function dYdt=f(t,Y)
y=Y(1);v=Y(2);
dYdt=[v;-3**sin(t)-3**v-6**y];
Plot y(t) and v(t) in the same window (do not use subplot), and the phase plot showing v vs
y in a separate window.
Add a legend to the first plot. (Note: to display v(t)=y'(t), use 'v(t)=y''(t)').
Add a grid. Use the command ylim ([-2.8,2.8]) to adjust the y-limits for both plots. Adjust
the x-limits in the phase plot so as to reproduce the pictures in Figure 7.
Figure 7: Time series y=y(t) and v=v(t)=y'(t)(left), and phase plot v=y' vs.y for (4).to.=0;tf=20;yo.=[10;60];
a=.8;b=.01;c=.6;d=.1;
[t,y]=ode45(@f,[to.,tf],yo.,[],a,b,c,d);
u1=y(:,1);u2=y(:,2);,% y in output has 2 columns corresponding to u1 and u2
figure(1);
subplot(2,1,1); plot(t,u1,'b-+'); ylabel('u1');
subplot(2,1,2); plot(t,u2,'ro-'); ylabel('u2');
figure(2)
plot(u1,u2); axis square; xlabel('u_1'); ylabel('u_2'); % plot the phase plot
%---------------------------------------------------------
function dydt =f(t,y,a,b,c,d)
u1=y(1);u2=y(2);
dydt =[a**u1-b**u1**u2;-c**u2+d**u1**u2];
end
 (a) Modify the function ex_with 2eqs to solve the IVP (4)

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!