Question: Case Study BioPharma, Inc . 2 2 This case was inspired by Applichem ( A ) , Harvard Business School Case 9 - 6 8

Case Study BioPharma, Inc.2
2 This case was inspired by Applichem (A), Harvard Business School Case 9-685-051,1985.
[Return to reference]
In 2013, Phillip (Phil) Landgraf faced several glaring problems in the financial performance of his company, BioPharma, Inc. The firm had experienced a steep decline in profits and high costs at its plants in Germany and Japan. Landgraf, the companys president for worldwide operations, knew that demand for the companys products was stable across the globe. As a result, the surplus capacity in his global production network looked like a luxury he could no longer afford.
Any improvement in financial performance was dependent on having the most efficient network in place, because revenues were unlikely to grow. Cutting costs was thus a top priority for the coming year. To help design a more cost-effective network, Landgraf assigned a task force to recommend a course of action.
Background
BioPharma, Inc. is a global manufacturer of bulk chemicals used in the pharmaceutical industry. The company holds patents on two chemicals that are called Highcal and Relax internally. These bulk chemicals are used by the companys pharmaceutical division and are also sold to other drug manufacturers. There are distinctions in the precise chemical specifications to be met in different parts of the world. All plants, however, are currently set up to be able to produce both chemicals for any part of the world.
For 2013, sales of each product by region and the production and capacity at each plant are shown in Table6-18. The plant capacity, measured in millions of kilograms of production, can be assigned to either chemical, as long as the plant is capable of producing both. BioPharma has forecast that its sales for the two chemicals are likely to be stable for all parts of the world, except for Asia without Japan, where sales are expected to grow by 10 percent annually for each of the next five years before stabilizing.
Table 6-18 Sales by Region and Production/Capacity by Plant of Highcal and Relax (in Millions of Kilograms)
Highcal
Relax
Region
Plant
Capacity
2013 Sales
2013 Production
2013 Sales
2013 Production
Latin America
Brazil
18.0
7.0
11.0
7.0
7.0
Europe
Germany
45.0
15.0
15.0
12.0
0.0
Asia w/o Japan
India
18.0
5.0
10.0
3.0
8.0
Japan
Japan
10.0
7.0
2.0
8.0
0.0
Mexico
Mexico
30.0
3.0
12.0
3.0
18.0
U.S.
U.S.
22.0
18.0
5.0
17.0
17.0
The Japanese plant is a technology leader within the BioPharma network in terms of its ability to handle regulatory and environmental issues. Some developments in the Japanese plant had been transferred to other plants in the network. The German plant is a leader in terms of its production ability. The plant has routinely had the highest yields within the global network. The Brazilian, Indian, and Mexican plants have somewhat outdated technology and are in need of an update.
Current Plant Costs at BioPharma
After considerable debate, the task force identified the cost structure at each plant in 2013 U.S.$ are as shown in Table 6-19. Each plant incurs an annual fixed cost that is independent of the level of production in the plant. The fixed cost includes depreciation, utilities, and the salaries and fringe benefits of employees involved in general management, scheduling, expediting, accounting, maintenance, and so forth. Each plant that is capable of producing either Highcal or Relax also incurs a product-related fixed cost that is independent of the quantity of each chemical produced. The product-related fixed cost includes depreciation of equipment specific and other fixed costs that are specific to a chemical. If a plant maintains the capability to produce a particular chemical, it incurs the corresponding product-related fixed cost even if the chemical is not produced at the plant.
Table 6-19 Fixed and Variable Production Costs at Each BioPharma Plant in 2013(U.S. $)
Highcal
Relax
Plant
Plant Fixed Cost (million $)
Highcal Fixed Cost (million $)
Relax Fixed Cost (million $)
Raw Material ($/kg)
Production cost ($/kg)
Raw Material ($/kg)
Production cost ($/kg)
Brazil
20.0
5.0
5.0
3.6
5.1
4.6
6.6
Germany
45.0
13.0
13.0
3.9
6.0
5.0
7.0
India
14.0
3.0
3.0
3.6
4.5
4.5
6.0
Japan
13.0
4.0
4.0
3.9
6.0
5.1
7.0
Mexico
30.0
6.0
6.0
3.6
5.0
4.6
6.5
U.S.
23.0
5.0
5.0
3.6
5.0
4.5
6.5
The variable production cost of each chemical consists of two components: raw materials and production costs. The variable production cost is incurred in proportion to the quantity of chemical produced and includes direct labor and scrap. The plants themselves can handle varying levels of production. In fact, they can also be idled for the year, inCase Study BioPharma, Inc.2
2 This case was inspired by Applichem (A), Harvard Business School Case 9-685-051,1985.
[Return to reference]
In 2013, Phillip (Phil) Landgraf faced several glaring problems in the fina

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related General Management Questions!