Question: Consider the definite integral (a) Approximate the definite integral using equal width subintervals and (i) the Trapezoidal Rule. 54.310893552517663 (ii) Simpson's Rule. 53.60563008410071 (b) Given
Consider the definite integral (a) Approximate the definite integral using equal width subintervals and (i) the Trapezoidal Rule. 54.310893552517663 (ii) Simpson's Rule. 53.60563008410071 (b) Given that, for all , on , determine the absolute value of the maximum possible error in each approximation in (a). 1/ln(e) e^4/(ln(e)) (c) Evaluate: 53.59815003 (d) Using the results from parts (a) and (c), find the absolute value of the exact error in each approximation in (a). abs((53.59815003-54.310893552517663)/53.59815003)*100 abs((53.59815003-53.60563008410071)/53.59815003)*100
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
